IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v47y2010i2p198-205.html
   My bibliography  Save this article

Bias correction for estimated distortion risk measure using the bootstrap

Author

Listed:
  • Kim, Joseph H.T.

Abstract

The bias of the empirical estimate of a given risk measure has recently been of interest in the risk management literature. In particular, Kim and Hardy (2007) showed that the bias can be corrected for the Conditional Tail Expectation (CTE, a.k.a. Tail-VaR or Expected Shortfall) using the bootstrap. This article extends their result to the distortion risk measure (DRM) class where the CTE is a special case. In particular, through the exact bootstrap, it is analytically proved that the bias of the empirical estimate of DRM with concave distortion function is negative and can be corrected on the bootstrap, using the fact that the bootstrapped loss is majorized by the original loss vector. Since the class of DRM is a subset of the L-estimator class, the result provides a sufficient condition for the bootstrap bias correction for L-estimators. Numerical examples are presented to show the effectiveness of the bootstrap bias correction. Later a practical guideline to choose the estimate with a lower mean squared error is also proposed based on the analytic form of the double bootstrapped estimate, which can be useful in estimating risk measures where the bias is non-cumulative across loss portfolio.

Suggested Citation

  • Kim, Joseph H.T., 2010. "Bias correction for estimated distortion risk measure using the bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 198-205, October.
  • Handle: RePEc:eee:insuma:v:47:y:2010:i:2:p:198-205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(10)00056-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Joseph H.T. & Hardy, Mary R., 2009. "Estimating the Variance of Bootstrapped Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 39(1), pages 199-223, May.
    2. A. D. Hutson & M. D. Ernst, 2000. "The exact bootstrap mean and variance of an L‐estimator," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 89-94.
    3. Jeske D.R. & Sampath A., 2003. "A Real Example That Illustrates Interesting Properties of Bootstrap Bias Correction," The American Statistician, American Statistical Association, vol. 57, pages 62-65, February.
    4. Inui, Koji & Kijima, Masaaki & Kitano, Atsushi, 2005. "VaR is subject to a significant positive bias," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 299-311, May.
    5. Bruce Jones & Ričardas Zitikis, 2003. "Empirical Estimation of Risk Measures and Related Quantities," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 44-54.
    6. Jones, Bruce L. & Zitikis, Ricardas, 2007. "Risk measures, distortion parameters, and their empirical estimation," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 279-297, September.
    7. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    8. Jones, Bruce L. & Puri, Madan L. & Zitikis, Ricardas, 2006. "Testing hypotheses about the equality of several risk measure values with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 253-270, April.
    9. Kim, Joseph Hyun Tae & Hardy, Mary R., 2007. "Quantifying and Correcting the Bias in Estimated Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 365-386, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    2. Lauer, Alexandra & Zähle, Henryk, 2017. "Bootstrap consistency and bias correction in the nonparametric estimation of risk measures of collective risks," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 99-108.
    3. Alemany, Ramon & Bolancé, Catalina & Guillén, Montserrat, 2013. "A nonparametric approach to calculating value-at-risk," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 255-262.
    4. Belles-Sampera, Jaume & Merigó, José M. & Guillén, Montserrat & Santolino, Miguel, 2013. "The connection between distortion risk measures and ordered weighted averaging operators," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 411-420.
    5. Ramon Alemany & Catalina Bolancé & Montserrat Guillén, 2012. "Nonparametric estimation of Value-at-Risk," Working Papers XREAP2012-19, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2012.
    6. Gao, Huan & Mamon, Rogemar & Liu, Xiaoming, 2017. "Risk measurement of a guaranteed annuity option under a stochastic modelling framework," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 100-119.
    7. Ramon Alemany & Catalina Bolance & Montserrat Guillen, 2014. "Accounting for severity of risk when pricing insurance products," Working Papers 2014-05, Universitat de Barcelona, UB Riskcenter.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psarrakos, Georgios & Sordo, Miguel A., 2019. "On a family of risk measures based on proportional hazards models and tail probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 232-240.
    2. Henryk Zähle, 2011. "Rates of almost sure convergence of plug-in estimates for distortion risk measures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 267-285, September.
    3. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    4. Sordo, Miguel A., 2008. "Characterizations of classes of risk measures by dispersive orders," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1028-1034, June.
    5. Georg Pflug & Nancy Wozabal, 2010. "Asymptotic distribution of law-invariant risk functionals," Finance and Stochastics, Springer, vol. 14(3), pages 397-418, September.
    6. Asimit, Alexandru V. & Li, Jinzhu, 2016. "Extremes for coherent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 332-341.
    7. Labopin-Richard T. & Gamboa F. & Garivier A. & Iooss B., 2016. "Bregman superquantiles. Estimation methods and applications," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-33, March.
    8. Brahimi, Brahim & Abdelli, Jihane, 2016. "Estimating the distortion parameter of the proportional hazards premium for heavy-tailed losses under Lévy-stable regime," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 135-143.
    9. Darinka Dentcheva & Spiridon Penev & Andrzej Ruszczyński, 2017. "Statistical estimation of composite risk functionals and risk optimization problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 737-760, August.
    10. Gao, Huan & Mamon, Rogemar & Liu, Xiaoming, 2017. "Risk measurement of a guaranteed annuity option under a stochastic modelling framework," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 132(C), pages 100-119.
    11. Wozabal, Nancy, 2009. "Uniform limit theorems for functions of order statistics," Statistics & Probability Letters, Elsevier, vol. 79(12), pages 1450-1455, June.
    12. Russo, Ralph P. & Shyamalkumar, Nariankadu D., 2010. "Bounds for the bias of the empirical CTE," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 352-357, December.
    13. Peng, Liang & Qi, Yongcheng & Wang, Ruodu & Yang, Jingping, 2012. "Jackknife empirical likelihood method for some risk measures and related quantities," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 142-150.
    14. Lauer, Alexandra & Zähle, Henryk, 2017. "Bootstrap consistency and bias correction in the nonparametric estimation of risk measures of collective risks," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 99-108.
    15. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 459-465, February.
    16. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    17. Psarrakos, Georgios & Vliora, Polyxeni, 2021. "Sensitivity analysis and tail variability for the Wang’s actuarial index," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 147-152.
    18. Jones, Bruce L. & Puri, Madan L. & Zitikis, Ricardas, 2006. "Testing hypotheses about the equality of several risk measure values with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 253-270, April.
    19. Necir, Abdelhakim & Meraghni, Djamel, 2009. "Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 49-58, August.
    20. Belzunce, Félix & Pinar, José F. & Ruiz, José M. & Sordo, Miguel A., 2012. "Comparison of risks based on the expected proportional shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 292-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:47:y:2010:i:2:p:198-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.