IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v66y2004i3p335-345.html
   My bibliography  Save this article

Efficient estimators for functionals of Markov chains with parametric marginals

Author

Listed:
  • Penev, Spiridon
  • Peng, Hanxiang
  • Schick, Anton
  • Wefelmeyer, Wolfgang

Abstract

Suppose we observe a geometrically ergodic Markov chain with a parametric model for the marginal, but no (further) information about the transition distribution. Then the empirical estimator for a linear functional of the joint law of two successive observations is no longer efficient. We construct an improved estimator and show that it is efficient. The construction is similar to a recent one for bivariate models with parametric marginals. The result applies to discretely observed parametric continuous-time processes.

Suggested Citation

  • Penev, Spiridon & Peng, Hanxiang & Schick, Anton & Wefelmeyer, Wolfgang, 2004. "Efficient estimators for functionals of Markov chains with parametric marginals," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 335-345, February.
  • Handle: RePEc:eee:stapro:v:66:y:2004:i:3:p:335-345
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00361-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bo Martin Bibby & Michael Sørensen, 2001. "Simplified Estimating Functions for Diffusion Models with a High‐dimensional Parameter," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(1), pages 99-112, March.
    2. Mathieu Kessler, 2000. "Simple and Explicit Estimating Functions for a Discretely Observed Diffusion Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(1), pages 65-82, March.
    3. Peng, Hanxiang & Schick, Anton, 2002. "On efficient estimation of linear functionals of a bivariate distribution with known marginals," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 83-91, August.
    4. Glynn, Peter W. & Ormoneit, Dirk, 2002. "Hoeffding's inequality for uniformly ergodic Markov chains," Statistics & Probability Letters, Elsevier, vol. 56(2), pages 143-146, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friedrich Hubalek & Petra Posedel, 2008. "Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models," Papers 0807.3479, arXiv.org.
    2. Weiwei Guo & Lingfei Li, 2019. "Parametric inference for discretely observed subordinate diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 77-110, April.
    3. J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
    4. Kusuoka, Seiichiro & Tudor, Ciprian A., 2012. "Stein’s method for invariant measures of diffusions via Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1627-1651.
    5. H. S. Chang, 2004. "Technical Note: On Ordinal Comparison of Policies in Markov Reward Processes," Journal of Optimization Theory and Applications, Springer, vol. 122(1), pages 207-217, July.
    6. A. M. Kulik & N. N. Leonenko & I. Papić & N. Šuvak, 2020. "Parameter Estimation for Non-Stationary Fisher-Snedecor Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1023-1061, September.
    7. Yongqiang Tang, 2007. "A Hoeffding-Type Inequality for Ergodic Time Series," Journal of Theoretical Probability, Springer, vol. 20(2), pages 167-176, June.
    8. Aliu, A. Hassan & Abiodun A. A. & Ipinyomi R.A., 2017. "Statistical Inference for Discretely Observed Diffusion Epidemic Models," International Journal of Mathematics Research, Conscientia Beam, vol. 6(1), pages 29-35.
    9. Liu, Jinpeng & Liu, Yuanyuan & Zhao, Yiqiang Q., 2022. "Augmented truncation approximations to the solution of Poisson’s equation for Markov chains," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    10. Friedrich Hubalek & Petra Posedel, 2011. "Joint analysis and estimation of stock prices and trading volume in Barndorff-Nielsen and Shephard stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 11(6), pages 917-932.
    11. Shie Mannor & John N. Tsitsiklis, 2005. "On the Empirical State-Action Frequencies in Markov Decision Processes Under General Policies," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 545-561, August.
    12. Peng, Hanxiang & Schick, Anton, 2005. "Efficient estimation of linear functionals of a bivariate distribution with equal, but unknown marginals: the least-squares approach," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 385-409, August.
    13. Sandrić, Nikola & Šebek, Stjepan, 2023. "Hoeffding’s inequality for non-irreducible Markov models," Statistics & Probability Letters, Elsevier, vol. 200(C).
    14. Leah Kelly, 2004. "Inference and Intraday Analysis of Diversified World Stock Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 24, July-Dece.
    15. Miasojedow, Błażej, 2014. "Hoeffding’s inequalities for geometrically ergodic Markov chains on general state space," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 115-120.
    16. Genon-Catalot, Valentine & Larédo, Catherine, 2021. "Probabilistic properties and parametric inference of small variance nonlinear self-stabilizing stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 513-548.
    17. Helle Sørensen, 2002. "Parametric Inference for Diffusion Processes Observed at Discrete Points in Time: a Survey," Discussion Papers 02-08, University of Copenhagen. Department of Economics.
    18. Lin, Liang-Ching & Lee, Sangyeol & Guo, Meihui, 2013. "Goodness-of-fit test for stochastic volatility models," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 473-498.
    19. Segers, J.J.J. & van den Akker, R. & Werker, B.J.M., 2008. "Improving Upon the Marginal Empirical Distribution Functions when the Copula is Known," Other publications TiSEM 950a8cda-8f8c-43a9-a5c2-8, Tilburg University, School of Economics and Management.
    20. Renou, Ludovic & Tomala, Tristan, 2015. "Approximate implementation in Markovian environments," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 401-442.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:66:y:2004:i:3:p:335-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.