IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v28y2001i1p99-112.html
   My bibliography  Save this article

Simplified Estimating Functions for Diffusion Models with a High‐dimensional Parameter

Author

Listed:
  • Bo Martin Bibby
  • Michael Sørensen

Abstract

We consider estimating functions for discretely observed diffusion processes of the following type: for one part of the parameter of interest we propose to use a simple and explicit estimating function of the type studied by Kessler (2000); for the remaining part of the parameter we use a martingale estimating function. Such an approach is particularly useful in practical applications when the parameter is high‐dimensional. It is also often necessary to supplement a simple estimating function by another type of estimating function because only the part of the parameter on which the invariant measure depends can be estimated by a simple estimating function. Under regularity conditions the resulting estimators are consistent and asymptotically normal. Several examples are considered in order to demonstrate the idea of the estimating procedure. The method is applied to two data sets comprising wind velocities and stock prices. In one example we also propose a general method for constructing diffusion models with a prescribed marginal distribution which have a flexible dependence structure.

Suggested Citation

  • Bo Martin Bibby & Michael Sørensen, 2001. "Simplified Estimating Functions for Diffusion Models with a High‐dimensional Parameter," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(1), pages 99-112, March.
  • Handle: RePEc:bla:scjsta:v:28:y:2001:i:1:p:99-112
    DOI: 10.1111/1467-9469.00226
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00226
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aliu, A. Hassan & Abiodun A. A. & Ipinyomi R.A., 2017. "Statistical Inference for Discretely Observed Diffusion Epidemic Models," International Journal of Mathematics Research, Conscientia Beam, vol. 6(1), pages 29-35.
    2. J. Jimenez & R. Biscay & T. Ozaki, 2005. "Inference Methods for Discretely Observed Continuous-Time Stochastic Volatility Models: A Commented Overview," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 12(2), pages 109-141, June.
    3. Kusuoka, Seiichiro & Tudor, Ciprian A., 2012. "Stein’s method for invariant measures of diffusions via Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1627-1651.
    4. Friedrich Hubalek & Petra Posedel, 2008. "Asymptotic analysis for a simple explicit estimator in Barndorff-Nielsen and Shephard stochastic volatility models," Papers 0807.3479, arXiv.org.
    5. Penev, Spiridon & Peng, Hanxiang & Schick, Anton & Wefelmeyer, Wolfgang, 2004. "Efficient estimators for functionals of Markov chains with parametric marginals," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 335-345, February.
    6. Weiwei Guo & Lingfei Li, 2019. "Parametric inference for discretely observed subordinate diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 77-110, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:28:y:2001:i:1:p:99-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.