IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v52y2001i2p115-124.html
   My bibliography  Save this article

General over-relaxation Markov chain Monte Carlo algorithms for Gaussian densities

Author

Listed:
  • Barone, Piero
  • Sebastiani, Giovanni
  • Stander, Julian

Abstract

We study general over-relaxation Markov chain Monte Carlo samplers for multivariate Gaussian densities. We provide conditions for convergence based on the spectral radius of the transition matrix and on detailed balance. We illustrate these algorithms using an image analysis example.

Suggested Citation

  • Barone, Piero & Sebastiani, Giovanni & Stander, Julian, 2001. "General over-relaxation Markov chain Monte Carlo algorithms for Gaussian densities," Statistics & Probability Letters, Elsevier, vol. 52(2), pages 115-124, April.
  • Handle: RePEc:eee:stapro:v:52:y:2001:i:2:p:115-124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00165-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. O. Roberts & S. K. Sahu, 1997. "Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 291-317.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    2. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    3. Ahelegbey, Daniel Felix & Giudici, Paolo & Hashem, Shatha Qamhieh, 2021. "Network VAR models to measure financial contagion," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    4. Pasanisi, Alberto & Fu, Shuai & Bousquet, Nicolas, 2012. "Estimating discrete Markov models from various incomplete data schemes," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2609-2625.
    5. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    6. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    7. Román, Jorge Carlos & Hobert, James P. & Presnell, Brett, 2014. "On reparametrization and the Gibbs sampler," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 110-116.
    8. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    9. Chib, Siddhartha, 2004. "Markov Chain Monte Carlo Technology," Papers 2004,22, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    10. Jin, Zhumengmeng & Hobert, James P., 2022. "On the convergence rate of the “out-of-order” block Gibbs sampler," Statistics & Probability Letters, Elsevier, vol. 188(C).
    11. Moores, Matthew T. & Hargrave, Catriona E. & Deegan, Timothy & Poulsen, Michael & Harden, Fiona & Mengersen, Kerrie, 2015. "An external field prior for the hidden Potts model with application to cone-beam computed tomography," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 27-41.
    12. Jeffrey Rouder & Jordan Province & Richard Morey & Pablo Gomez & Andrew Heathcote, 2015. "The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 491-513, June.
    13. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
    14. Bianchi, Daniele & Tamoni, Andrea, 2016. "The dynamics of expected returns: evidence from multi-scale time series modelling," LSE Research Online Documents on Economics 118992, London School of Economics and Political Science, LSE Library.
    15. Yin, Libo & Ma, Xiyuan, 2018. "Causality between oil shocks and exchange rate: A Bayesian, graph-based VAR approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 434-453.
    16. MacEachern, Steven N. & Peruggia, Mario, 2000. "Subsampling the Gibbs sampler: variance reduction," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 91-98, March.
    17. Bianchi, Daniele & Billio, Monica & Casarin, Roberto & Guidolin, Massimo, 2019. "Modeling systemic risk with Markov Switching Graphical SUR models," Journal of Econometrics, Elsevier, vol. 210(1), pages 58-74.
    18. Moins, Théo & Arbel, Julyan & Girard, Stéphane & Dutfoy, Anne, 2023. "Reparameterization of extreme value framework for improved Bayesian workflow," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    19. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    20. Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:52:y:2001:i:2:p:115-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.