IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/118992.html
   My bibliography  Save this paper

The dynamics of expected returns: evidence from multi-scale time series modelling

Author

Listed:
  • Bianchi, Daniele
  • Tamoni, Andrea

Abstract

Conventional wisdom posits that all the relevant investors' information lies at the highest possible frequency of observation, so that long-run expected returns can be mechanically inferred by a forward aggregation of short-run estimates. We reverse such logic and propose a novel framework to model and extract the dynamics of latent short-term expected returns by coherently combining the lower-frequency information embedded in multiple predictors. We show that the information cascade from low- to high-frequency levels allows to identify long-lasting effects on expected returns that cannot be captured by standard persistent ARMA processes. The empirical analysis demonstrates that the ability of the model to capture simultaneously medium- to long-term fluctuations in the dynamics of expected returns, has first order implications for forecasting and investment decisions.

Suggested Citation

  • Bianchi, Daniele & Tamoni, Andrea, 2016. "The dynamics of expected returns: evidence from multi-scale time series modelling," LSE Research Online Documents on Economics 118992, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:118992
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/118992/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin Lettau & Stijn Van Nieuwerburgh, 2008. "Reconciling the Return Predictability Evidence," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1607-1652, July.
    2. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    3. Campbell, John Y. & Viceira, Luis Manuel, 2005. "The Term Structure of the Risk–Return Trade-Off," Scholarly Articles 34299168, Harvard University Department of Economics.
    4. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    5. Kandel, Shmuel & Stambaugh, Robert F, 1996. "On the Predictability of Stock Returns: An Asset-Allocation Perspective," Journal of Finance, American Finance Association, vol. 51(2), pages 385-424, June.
    6. Pierluigi Balduzzi & Sanjiv Ranjan Das & Silverio Foresi, 1998. "The Central Tendency: A Second Factor In Bond Yields," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 62-72, February.
    7. Ľuboš Pástor & Robert F. Stambaugh, 2012. "Are Stocks Really Less Volatile in the Long Run?," Journal of Finance, American Finance Association, vol. 67(2), pages 431-478, April.
    8. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    9. John Y. Campbell & N. Gregory Mankiw, 1989. "Consumption, Income, and Interest Rates: Reinterpreting the Time Series Evidence," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 185-246, National Bureau of Economic Research, Inc.
    10. Martin Lettau & Sydney Ludvigson, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    11. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    12. Shiller, Robert J, 1981. "Do Stock Prices Move Too Much to be Justified by Subsequent Changes in Dividends?," American Economic Review, American Economic Association, vol. 71(3), pages 421-436, June.
    13. John Geweke & Gianni Amisano, 2012. "Prediction with Misspecified Models," American Economic Review, American Economic Association, vol. 102(3), pages 482-486, May.
    14. Ľuboš Pástor & Robert F. Stambaugh, 2009. "Predictive Systems: Living with Imperfect Predictors," Journal of Finance, American Finance Association, vol. 64(4), pages 1583-1628, August.
    15. Calvet, Laurent E. & Fisher, Adlai J., 2007. "Multifrequency news and stock returns," Journal of Financial Economics, Elsevier, vol. 86(1), pages 178-212, October.
    16. John Y. Campbell & Luis M. Viceira, 2005. "The Term Structure of the Risk–Return Trade-Off," Financial Analysts Journal, Taylor & Francis Journals, vol. 61(1), pages 34-44, January.
    17. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    18. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    19. Lauren Cohen & Andrea Frazzini, 2008. "Economic Links and Predictable Returns," Journal of Finance, American Finance Association, vol. 63(4), pages 1977-2011, August.
    20. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    21. Markku Lanne, 2002. "Testing The Predictability Of Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 407-415, August.
    22. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    23. A. Arnéodo & J.-F. Muzy & D. Sornette, 1998. "”Direct” causal cascade in the stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 2(2), pages 277-282, March.
    24. Sims, Christopher A. & Waggoner, Daniel F. & Zha, Tao, 2008. "Methods for inference in large multiple-equation Markov-switching models," Journal of Econometrics, Elsevier, vol. 146(2), pages 255-274, October.
    25. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    26. JULES H. Van BINSBERGEN & RALPH S. J. KOIJEN, 2010. "Predictive Regressions: A Present‐Value Approach," Journal of Finance, American Finance Association, vol. 65(4), pages 1439-1471, August.
    27. Lars A. Lochstoer, 2009. "Expected Returns and the Business Cycle: Heterogeneous Goods and Time-Varying Risk Aversion," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5251-5294, December.
    28. Bollerslev, Tim & Wright, Jonathan H., 2000. "Semiparametric estimation of long-memory volatility dependencies: The role of high-frequency data," Journal of Econometrics, Elsevier, vol. 98(1), pages 81-106, September.
    29. Engle, Robert F, 1974. "Band Spectrum Regression," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 15(1), pages 1-11, February.
    30. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    31. Doron Avramov, 2004. "Stock Return Predictability and Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 17(3), pages 699-738.
    32. G. O. Roberts & S. K. Sahu, 1997. "Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 291-317.
    33. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    2. Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
    3. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    4. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022. "Testing for episodic predictability in stock returns," Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
    5. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    6. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    7. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    8. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014. "Forecasting stock returns under economic constraints," Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
    9. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    10. Ľuboš Pástor & Robert F. Stambaugh, 2009. "Predictive Systems: Living with Imperfect Predictors," Journal of Finance, American Finance Association, vol. 64(4), pages 1583-1628, August.
    11. Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
    12. Nonejad, Nima, 2021. "Predicting equity premium using dynamic model averaging. Does the state–space representation matter?," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    13. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
    14. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
    15. Davide Pettenuzzo & Allan G. Timmermann & Rossen I. Valkanov, 2008. "Return Predictability under Equilibrium Constraints on the Equity Premium," Working Papers 37, Brandeis University, Department of Economics and International Business School.
    16. Daniele Bianchi & Kenichiro McAlinn, 2018. "Large-Scale Dynamic Predictive Regressions," Papers 1803.06738, arXiv.org.
    17. Pyun, Sungjune, 2019. "Variance risk in aggregate stock returns and time-varying return predictability," Journal of Financial Economics, Elsevier, vol. 132(1), pages 150-174.
    18. Ilaria Piatti & Fabio Trojani, 2020. "Dividend Growth Predictability and the Price–Dividend Ratio," Management Science, INFORMS, vol. 66(1), pages 130-158, January.
    19. Pan, Zhiyuan & Pettenuzzo, Davide & Wang, Yudong, 2020. "Forecasting stock returns: A predictor-constrained approach," Journal of Empirical Finance, Elsevier, vol. 55(C), pages 200-217.
    20. Mathias S. Kruttli, 2016. "From Which Consumption-Based Asset Pricing Models Can Investors Profit? Evidence from Model-Based Priors," Finance and Economics Discussion Series 2016-027, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    Keywords

    expected returns; long-horizon predictability; multi-scale; Markov chain Monte Carlo;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:118992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.