IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v29y2012i3p277-296.html
   My bibliography  Save this article

Block-Relaxation Approaches for Fitting the INDCLUS Model

Author

Listed:
  • Tom Wilderjans
  • Dirk Depril
  • Iven Mechelen

Abstract

A well-known clustering model to represent I × I × J data blocks, the J frontal slices of which consist of I × I object by object similarity matrices, is the INDCLUS model. This model implies a grouping of the I objects into a prespecified number of overlapping clusters, with each cluster having a slice-specific positive weight. An INDCLUS model is fitted to a given data set by means of minimizing a least squares loss function. The minimization of this loss function has appeared to be a difficult problem for which several algorithmic strategies have been proposed. At present, the best available option seems to be the SYMPRES algorithm, which minimizes the loss function by means of a block-relaxation algorithm. Yet, SYMPRES is conjectured to suffer from a severe local optima problem. As a way out, based on theoretical results with respect to optimally designing block-relaxation algorithms, five alternative block-relaxation algorithms are proposed. In a simulation study it appears that the alternative algorithms with overlapping parameter subsets perform best and clearly outperform SYMPRES in terms of optimization performance and cluster recovery. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Tom Wilderjans & Dirk Depril & Iven Mechelen, 2012. "Block-Relaxation Approaches for Fitting the INDCLUS Model," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 277-296, October.
  • Handle: RePEc:spr:jclass:v:29:y:2012:i:3:p:277-296
    DOI: 10.1007/s00357-012-9113-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-012-9113-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-012-9113-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Carroll & Phipps Arabie, 1983. "Indclus: An individual differences generalization of the adclus model and the mapclus algorithm," Psychometrika, Springer;The Psychometric Society, vol. 48(2), pages 157-169, June.
    2. Wilderjans, Tom & Ceulemans, Eva & Van Mechelen, Iven, 2009. "Simultaneous analysis of coupled data blocks differing in size: A comparison of two weighting schemes," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1086-1098, February.
    3. Depril, Dirk & Van Mechelen, Iven & Mirkin, Boris, 2008. "Algorithms for additive clustering of rectangular data tables," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4923-4938, July.
    4. Glenn Milligan, 1980. "An examination of the effect of six types of error perturbation on fifteen clustering algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(3), pages 325-342, September.
    5. Boris Mirkin, 1990. "A sequential fitting procedure for linear data analysis models," Journal of Classification, Springer;The Classification Society, vol. 7(2), pages 167-195, September.
    6. Eva Ceulemans & Iven Mechelen & Iwin Leenen, 2007. "The Local Minima Problem in Hierarchical Classes Analysis: An Evaluation of a Simulated Annealing Algorithm and Various Multistart Procedures," Psychometrika, Springer;The Psychometric Society, vol. 72(3), pages 377-391, September.
    7. G. O. Roberts & S. K. Sahu, 1997. "Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 291-317.
    8. Anil Chaturvedi & J. Carroll, 1994. "An alternating combinatorial optimization approach to fitting the INDCLUS and generalized INDCLUS models," Journal of Classification, Springer;The Classification Society, vol. 11(2), pages 155-170, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura Bocci & Donatella Vicari, 2019. "ROOTCLUS: Searching for “ROOT CLUSters” in Three-Way Proximity Data," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 941-985, December.
    2. Laura Bocci & Donatella Vicari, 2017. "GINDCLUS: Generalized INDCLUS with External Information," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 355-381, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julian Rossbroich & Jeffrey Durieux & Tom F. Wilderjans, 2022. "Model Selection Strategies for Determining the Optimal Number of Overlapping Clusters in Additive Overlapping Partitional Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 264-301, July.
    2. Dirk Depril & Iven Mechelen & Tom Wilderjans, 2012. "Lowdimensional Additive Overlapping Clustering," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 297-320, October.
    3. Stephen L. France & Wen Chen & Yumin Deng, 2017. "ADCLUS and INDCLUS: analysis, experimentation, and meta-heuristic algorithm extensions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 371-393, June.
    4. Henk Kiers, 1997. "A modification of the SINDCLUS algorithm for fitting the ADCLUS and INDCLUS models," Journal of Classification, Springer;The Classification Society, vol. 14(2), pages 297-310, September.
    5. Schepers, Jan & van Mechelen, Iven & Ceulemans, Eva, 2006. "Three-mode partitioning," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1623-1642, December.
    6. Anil Chaturvedi & J. Carroll, 1994. "An alternating combinatorial optimization approach to fitting the INDCLUS and generalized INDCLUS models," Journal of Classification, Springer;The Classification Society, vol. 11(2), pages 155-170, September.
    7. Depril, Dirk & Van Mechelen, Iven & Mirkin, Boris, 2008. "Algorithms for additive clustering of rectangular data tables," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4923-4938, July.
    8. Tom Frans Wilderjans & Eva Gaer & Henk A. L. Kiers & Iven Mechelen & Eva Ceulemans, 2017. "Principal Covariates Clusterwise Regression (PCCR): Accounting for Multicollinearity and Population Heterogeneity in Hierarchically Organized Data," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 86-111, March.
    9. Laura Bocci & Donatella Vicari, 2019. "ROOTCLUS: Searching for “ROOT CLUSters” in Three-Way Proximity Data," Psychometrika, Springer;The Psychometric Society, vol. 84(4), pages 941-985, December.
    10. Jan Schepers & Iven Mechelen & Eva Ceulemans, 2011. "The Real-Valued Model of Hierarchical Classes," Journal of Classification, Springer;The Classification Society, vol. 28(3), pages 363-389, October.
    11. Chiheb-Eddine N’Cir & Nadia Essoussi & Mohamed Limam, 2015. "Kernel-Based Methods to Identify Overlapping Clusters with Linear and Nonlinear Boundaries," Journal of Classification, Springer;The Classification Society, vol. 32(2), pages 176-211, July.
    12. Willem Heiser, 2013. "In memoriam, J. Douglas Carroll 1939–2011," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 5-13, January.
    13. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    14. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Ali Abdelzadeh, 2014. "The Impact of Political Conviction on the Relation Between Winning or Losing and Political Dissatisfaction," SAGE Open, , vol. 4(2), pages 21582440145, May.
    16. Bordt, Michael, 2018. "Discourses in Ecosystem Accounting: A Survey of the Expert Community," Ecological Economics, Elsevier, vol. 144(C), pages 82-99.
    17. Wedel, M. & Bijmolt, T.H.A., 1998. "Mixed Tree and Spatial Representation of Dissimilarity Judgments," Discussion Paper 1998-109, Tilburg University, Center for Economic Research.
    18. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    19. Ahelegbey, Daniel Felix & Giudici, Paolo & Hashem, Shatha Qamhieh, 2021. "Network VAR models to measure financial contagion," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    20. Tom Wilderjans & Eva Ceulemans & Iven Mechelen, 2008. "The CHIC Model: A Global Model for Coupled Binary Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 729-751, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:29:y:2012:i:3:p:277-296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.