IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v117y2007i1p121-142.html
   My bibliography  Save this article

An empirical central limit theorem for dependent sequences

Author

Listed:
  • Dedecker, Jérôme
  • Prieur, Clémentine

Abstract

We prove a central limit theorem for the d-dimensional distribution function of a class of stationary sequences. The conditions are expressed in terms of some coefficients which measure the dependence between a given [sigma]-algebra and indicators of quadrants. These coefficients are weaker than the corresponding mixing coefficients, and can be computed in many situations. In particular, we show that they are well adapted to functions of mixing sequences, iterated random functions, and a class of dynamical systems.

Suggested Citation

  • Dedecker, Jérôme & Prieur, Clémentine, 2007. "An empirical central limit theorem for dependent sequences," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 121-142, January.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:1:p:121-142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00089-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doukhan, Paul & Louhichi, Sana, 1999. "A new weak dependence condition and applications to moment inequalities," Stochastic Processes and their Applications, Elsevier, vol. 84(2), pages 313-342, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gourieroux, Christian & Jasiak, Joann, 2019. "Robust analysis of the martingale hypothesis," Econometrics and Statistics, Elsevier, vol. 9(C), pages 17-41.
    2. Dehling, Herold & Durieu, Olivier, 2011. "Empirical processes of multidimensional systems with multiple mixing properties," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1076-1096, May.
    3. Olivier Durieu & Marco Tusche, 2014. "An Empirical Process Central Limit Theorem for Multidimensional Dependent Data," Journal of Theoretical Probability, Springer, vol. 27(1), pages 249-277, March.
    4. Dehling, Herold & Durieu, Olivier & Volny, Dalibor, 2009. "New techniques for empirical processes of dependent data," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3699-3718, October.
    5. Berkes, István & Hörmann, Siegfried & Schauer, Johannes, 2009. "Asymptotic results for the empirical process of stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1298-1324, April.
    6. Christophe Cuny & Florence Merlevède, 2015. "Strong Invariance Principles with Rate for “Reverse” Martingale Differences and Applications," Journal of Theoretical Probability, Springer, vol. 28(1), pages 137-183, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Jerôme Dedecker & Paul Doukhan, 2002. "A New Covariance Inequality and Applications," Working Papers 2002-25, Center for Research in Economics and Statistics.
    3. Pierre Perron & Eduardo Zorita & Wen Cao & Clifford Hurvich & Philippe Soulier, 2017. "Drift in Transaction-Level Asset Price Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 769-790, September.
    4. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
    5. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    6. Berkes, István & Horváth, Lajos & Rice, Gregory, 2013. "Weak invariance principles for sums of dependent random functions," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 385-403.
    7. Tobias Adrian & Richard K. Crump & Erik Vogt, 2019. "Nonlinearity and Flight‐to‐Safety in the Risk‐Return Trade‐Off for Stocks and Bonds," Journal of Finance, American Finance Association, vol. 74(4), pages 1931-1973, August.
    8. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    9. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    10. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    11. Carvalho, Carlos & Masini, Ricardo & Medeiros, Marcelo C., 2018. "ArCo: An artificial counterfactual approach for high-dimensional panel time-series data," Journal of Econometrics, Elsevier, vol. 207(2), pages 352-380.
    12. Matteo Barigozzi & Christian Brownlees, 2019. "NETS: Network estimation for time series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 347-364, April.
    13. Francisco Blasques, 2014. "Transformed Polynomials For Nonlinear Autoregressive Models Of The Conditional Mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 218-238, May.
    14. Coulon-Prieur, Clémentine & Doukhan, Paul, 2000. "A triangular central limit theorem under a new weak dependence condition," Statistics & Probability Letters, Elsevier, vol. 47(1), pages 61-68, March.
    15. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    16. Hwang, Eunju & Shin, Dong Wan, 2012. "Strong consistency of the stationary bootstrap under ψ-weak dependence," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 488-495.
    17. Alessio Sancetta, 2007. "Weak Convergence of Laws on ℝ K with Common Marginals," Journal of Theoretical Probability, Springer, vol. 20(2), pages 371-380, June.
    18. Xuan Liang & Jiti Gao & Xiaodong Gong, 2022. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1784-1802, October.
    19. Agnieszka Jach & Tucker S. McElroy & Dimitris N. Politis, 2016. "Corrigendum to ‘Subsampling Inference for the Mean of Heavy-Tailed Long-Memory Time Series’ by A. Jach, T. S. McElroy and D. N. Politis," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(5), pages 713-720, September.
    20. Eunju Hwang & Dong Shin, 2016. "Kernel estimators of mode under $$\psi $$ ψ -weak dependence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 301-327, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:1:p:121-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.