Recursive local polynomial regression under dependence conditions
Author
Abstract
Suggested Citation
DOI: 10.1007/BF02595859
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Greblicki, Wlodzimierz & Pawlak, Miroslaw, 1987. "Necessary and sufficient consistency conditions for a recursive kernel regression estimate," Journal of Multivariate Analysis, Elsevier, vol. 23(1), pages 67-76, October.
- Masry, Elias, 1987. "Almost sure convergence of recursive density estimators for stationary mixing processes," Statistics & Probability Letters, Elsevier, vol. 5(4), pages 249-254, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Aboubacar Amiri, 2013. "Asymptotic normality of recursive estimators under strong mixing conditions," Statistical Inference for Stochastic Processes, Springer, vol. 16(2), pages 81-96, July.
- P. Cattiaux & José R. León & C. Prieur, 2015. "Recursive estimation for stochastic damping hamiltonian systems," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 401-424, September.
- Xin Wang, 2017. "Online Kernel estimation of stationary stochastic diffusion models," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1089-1103, July.
- Zhou, Yong & Liang, Hua, 2000. "Asymptotic Normality for L1 Norm Kernel Estimator of Conditional Median under [alpha]-Mixing Dependence," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 136-154, April.
- Györfi, László & Walk, Harro, 1997. "On the strong universal consistency of a recursive regression estimate by Pál Révész," Statistics & Probability Letters, Elsevier, vol. 31(3), pages 177-183, January.
- Harro Walk, 2001. "Strong Universal Pointwise Consistency of Recursive Regression Estimates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(4), pages 691-707, December.
- Miroslaw Pawlak, 1991. "On the almost everywhere properties of the kernel regression estimate," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(2), pages 311-326, June.
- Lanh Tran, 1990. "Recursive kernel density estimators under a weak dependence condition," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 42(2), pages 305-329, June.
More about this item
Keywords
Local polynomial fitting; recursive nonparametric estimation; strongly mixing processes; 62G07; 62H12; 62M09;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:9:y:2000:i:1:p:209-232. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.