IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v30y1996i4p305-311.html
   My bibliography  Save this article

A note on geometric ergodicity of autoregressive conditional heteroscedasticity (ARCH) model

Author

Listed:
  • Lu, Zudi

Abstract

For the pth-order linear ARCH model, , where [alpha]0 > 0, [alpha]i [greater-or-equal, slanted] 0, I = 1, 2, ..., p, {[var epsilon]t} is an i.i.d. normal white noise with E[var epsilon]t = 0, E[var epsilon]t2 = 1, and [var epsilon]t is independent of {Xs, s

Suggested Citation

  • Lu, Zudi, 1996. "A note on geometric ergodicity of autoregressive conditional heteroscedasticity (ARCH) model," Statistics & Probability Letters, Elsevier, vol. 30(4), pages 305-311, November.
  • Handle: RePEc:eee:stapro:v:30:y:1996:i:4:p:305-311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(95)00233-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Engle, Robert F, 1983. "Estimates of the Variance of U.S. Inflation Based upon the ARCH Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 15(3), pages 286-301, August.
    2. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Domowitz, Ian & Hakkio, Craig S., 1985. "Conditional variance and the risk premium in the foreign exchange market," Journal of International Economics, Elsevier, vol. 19(1-2), pages 47-66, August.
    5. Weiss, Andrew A, 1986. "ARCH and Bilinear Time Series Models: Comparison and Combination," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 59-70, January.
    6. Bera, Anil K & Higgins, Matthew L, 1993. "ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    7. A. K. Bera & M. L. Higgins, 1992. "A Test For Conditional Heteroskedasticity In Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(6), pages 501-519, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Degui & Lu, Zudi & Linton, Oliver, 2012. "Local Linear Fitting Under Near Epoch Dependence: Uniform Consistency With Convergence Rates," Econometric Theory, Cambridge University Press, vol. 28(5), pages 935-958, October.
    2. Cline, Daren B. H. & Pu, Huay-min H., 1999. "Stability of nonlinear AR(1) time series with delay," Stochastic Processes and their Applications, Elsevier, vol. 82(2), pages 307-333, August.
    3. Theis Lange, 2009. "First and second order non-linear cointegration models," CREATES Research Papers 2009-04, Department of Economics and Business Economics, Aarhus University.
    4. Lu, Zudi & Jiang, Zhenyu, 2001. "L1 geometric ergodicity of a multivariate nonlinear AR model with an ARCH term," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 121-130, January.
    5. Li, Degui & Lu, Zudi & Linton, Oliver, 2010. "Loch linear fitting under near epoch dependence: uniform consistency with convergence rate," LSE Research Online Documents on Economics 58160, London School of Economics and Political Science, LSE Library.
    6. Lu, Zudi & Linton, Oliver, 2007. "Local Linear Fitting Under Near Epoch Dependence," Econometric Theory, Cambridge University Press, vol. 23(1), pages 37-70, February.
    7. Fanyu Meng & Wenwu Gong & Jun Liang & Xian Li & Yiping Zeng & Lili Yang, 2021. "Impact of different control policies for COVID-19 outbreak on the air transportation industry: A comparison between China, the U.S. and Singapore," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-19, March.
    8. Carvalho, Alexandre & Skoulakis, Georgios, 2005. "Ergodicity and existence of moments for local mixtures of linear autoregressions," Statistics & Probability Letters, Elsevier, vol. 71(4), pages 313-322, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    2. P. J. Dawson & A. L. Tiffin & B. White, 2000. "Optimal Hedging Ratios for Wheat and Barley at the LIFFE: A GARCH Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 51(2), pages 147-161, May.
    3. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    4. Nijman, T.E. & Palm, F.C., 1991. "Recent developments in modeling volatility in financial data," Discussion Paper 1991-68, Tilburg University, Center for Economic Research.
    5. Daly, Kevin, 2008. "Financial volatility: Issues and measuring techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2377-2393.
    6. Hong, Yongmiao, 2001. "A test for volatility spillover with application to exchange rates," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 183-224, July.
    7. Elena Villar-Rubio & María-Dolores Huete-Morales & Federico Galán-Valdivieso, 2023. "Using EGARCH models to predict volatility in unconsolidated financial markets: the case of European carbon allowances," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(3), pages 500-509, September.
    8. Nijman, T.E. & Palm, F.C., 1991. "Recent developments in modeling volatility in financial data," Other publications TiSEM 0c1ff78c-d484-43bb-bcc3-a, Tilburg University, School of Economics and Management.
    9. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    10. Oliver Linton & Douglas Steigerwald, 2000. "Adaptive testing in arch models," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 145-174.
    11. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    12. Jiangze Du & Shaojie Lai & Kin Keung Lai & Shifei Zhou, 2021. "A novel term structure stochastic model with adaptive correlation for trend analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5485-5498, October.
    13. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    14. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    15. Dennis Kristensen, 2009. "On stationarity and ergodicity of the bilinear model with applications to GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 125-144, January.
    16. repec:cte:wsrepe:5708 is not listed on IDEAS
    17. Serkan Erkam & Tarkan Cavusoglu, 2008. "Modelling Inflation Uncertainty In Transition Economies:The Case Of Russia And The Former Soviet Republics," Economic Annals, Faculty of Economics and Business, University of Belgrade, vol. 53(178-179), pages 44-71, July - De.
    18. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    19. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    20. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    21. Brooks, Robert D. & Faff, Robert W. & McKenzie, Michael D. & Mitchell, Heather, 2000. "A multi-country study of power ARCH models and national stock market returns," Journal of International Money and Finance, Elsevier, vol. 19(3), pages 377-397, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:30:y:1996:i:4:p:305-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.