IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v51y2001i2p121-130.html
   My bibliography  Save this article

L1 geometric ergodicity of a multivariate nonlinear AR model with an ARCH term

Author

Listed:
  • Lu, Zudi
  • Jiang, Zhenyu

Abstract

In this note, the condition to ensure the L1 geometric ergodicity of a multivariate nonlinear AR model mixed with an ARCH term (also called conditional heteroscedastic autoregressive nonlinear model) is investigated. Under some mild conditions on the white noise process with first absolute moment, a sufficient condition much weaker than that by Ango Nze (C.R. Acad. Sci. Paris 315 ser. 1 (1992) 1301-1304) is derived. As an application, the L1 geometric ergodicity of an additive AR model mixed with a multiplicative ARCH term is studied. Our condition expands the application of the result in Ango Nze (C.R. Acad. Sci. Paris 315 ser. 1 (1992) 1301-1304) and is interesting for robust modeling when the white noise is fat-tailed with infinite variance. Some additional remarks are also made.

Suggested Citation

  • Lu, Zudi & Jiang, Zhenyu, 2001. "L1 geometric ergodicity of a multivariate nonlinear AR model with an ARCH term," Statistics & Probability Letters, Elsevier, vol. 51(2), pages 121-130, January.
  • Handle: RePEc:eee:stapro:v:51:y:2001:i:2:p:121-130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00138-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bossaerts, P. & Härdle, Wolfgang & Hafner, C., 1995. "A New Method for Volatility Estimation with Applications in Foreign Exchange Rate Series," SFB 373 Discussion Papers 1995,45, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Lijian Yang & Wolfgang Hardle & Jens Nielsen, 1999. "Nonparametric Autoregression with Multiplicative Volatility and Additive mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 579-604, September.
    3. Baillie, Richard T. & DeGennaro, Ramon P., 1990. "Stock Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(2), pages 203-214, June.
    4. Lu, Zudi, 1996. "A note on geometric ergodicity of autoregressive conditional heteroscedasticity (ARCH) model," Statistics & Probability Letters, Elsevier, vol. 30(4), pages 305-311, November.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    6. Tweedie, Richard L., 1975. "Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space," Stochastic Processes and their Applications, Elsevier, vol. 3(4), pages 385-403, October.
    7. Hardle, W. & Tsybakov, A., 1997. "Local polynomial estimators of the volatility function in nonparametric autoregression," Journal of Econometrics, Elsevier, vol. 81(1), pages 223-242, November.
    8. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(2), pages 258-289, February.
    9. Bhattacharya, Rabi & Lee, Chanho, 1995. "On geometric ergodicity of nonlinear autoregressive models," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 311-315, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    2. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1291-1320, October.
    3. Meitz, Mika & Saikkonen, Pentti, 2010. "A note on the geometric ergodicity of a nonlinear AR-ARCH model," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 631-638, April.
    4. Zhu, Huafeng & Zhang, Xingfa & Liang, Xin & Li, Yuan, 2017. "On a vector double autoregressive model," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 86-95.
    5. Frédérique Bec & Anders Rahbek, 2004. "Vector equilibrium correction models with non-linear discontinuous adjustments," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 628-651, December.
    6. Levine, Michael & Li, Jinguang (Tony), 2012. "A simple additivity test for conditionally heteroscedastic nonlinear autoregression," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2421-2429.
    7. Felix Chan & Michael McAleer & Marcelo C. Medeiros, 2015. "Structure and asymptotic theory for nonlinear models with GARCH erros," Economia, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics], vol. 16(1), pages 1-21.
    8. Lu, Zudi & Linton, Oliver, 2007. "Local Linear Fitting Under Near Epoch Dependence," Econometric Theory, Cambridge University Press, vol. 23(1), pages 37-70, February.
    9. Carvalho, Alexandre & Skoulakis, Georgios, 2005. "Ergodicity and existence of moments for local mixtures of linear autoregressions," Statistics & Probability Letters, Elsevier, vol. 71(4), pages 313-322, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linton, Oliver & Mammen, Enno, 2003. "Estimating semiparametric ARCH (8) models by kernel smoothing methods," LSE Research Online Documents on Economics 2187, London School of Economics and Political Science, LSE Library.
    2. Lijian Yang & Wolfgang Hardle & Jens Nielsen, 1999. "Nonparametric Autoregression with Multiplicative Volatility and Additive mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 579-604, September.
    3. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Lag Selection for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 457-487, July.
    4. Mohamed Chikhi & Claude Diebolt, 2010. "Nonparametric analysis of financial time series by the Kernel methodology," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(5), pages 865-880, August.
    5. Kim, Woocheol & Linton, Oliver, 2003. "A local instrumental variable estimation method for generalized additive volatility models," LSE Research Online Documents on Economics 2028, London School of Economics and Political Science, LSE Library.
    6. Chen, Gongmeng & Choi, Yoon K. & Zhou, Yong, 2005. "Nonparametric estimation of structural change points in volatility models for time series," Journal of Econometrics, Elsevier, vol. 126(1), pages 79-114, May.
    7. Lu, Zudi & Linton, Oliver, 2007. "Local Linear Fitting Under Near Epoch Dependence," Econometric Theory, Cambridge University Press, vol. 23(1), pages 37-70, February.
    8. Panagiotis Avramidis, 2016. "Adaptive likelihood estimator of conditional variance function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 132-151, March.
    9. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    10. Chikhi, Mohamed & Terraza, Michel, 2002. "Un essai de prévision non paramétrique de l'action France Télécom [A nonparametric prediction test of the France Telecom stock proces]," MPRA Paper 77268, University Library of Munich, Germany, revised Dec 2003.
    11. Heejoon Han & Shen Zhang, 2012. "Non‐stationary non‐parametric volatility model," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 204-225, June.
    12. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    13. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    14. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    15. Hunjra, Ahmed Imran & Azam, Muhammad & Niazi, Ghulam Shabbir Khan & Butt, Babar Zaheer & Rehman, Kashif-Ur- & Azam, Rauf i, 2010. "Risk and return relationship in stock market and commodity prices: a comprehensive study of Pakistani markets," MPRA Paper 40662, University Library of Munich, Germany.
    16. Muhammad Imtiaz Subhani & Syed Akif Hasan & Rabia Mohammad Ayub Moten & Amber Osman, 2011. "An Application of GARCH while investigating volatility in stock returns of the World," South Asian Journal of Management Sciences (SAJMS), Iqra University, Iqra University, vol. 5(2), pages 49-59, Fall.
    17. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Estimation of Generalized Impulse Response Functions," Econometric Society World Congress 2000 Contributed Papers 1417, Econometric Society.
    18. Chin-Tsai Lin & Yi-Hsien Wang, 2005. "An Analysis of Political Changes on Nikkei 225 Stock Returns and Volatilities," Annals of Economics and Finance, Society for AEF, vol. 6(1), pages 169-183, May.
    19. Sheriffdeen A. Tella & Olumuyiwa G. Yinusa & Ayinde Taofeek Olusola & Saban Celik, 2011. "Global Economic Crisis And Stock Markets Efficiency: Evidence From Selected Africa Countries," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 25(1), pages 139-169.
    20. Tzu-Yi Yang & Yu-Tai Yang, 2015. "A Study on the Asymmetry of the News Aspect of the Stock Market: Evidence from Three Institutional Investors in the Taiwan Stock Market," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(3), pages 361-383, June.

    More about this item

    Keywords

    Autoregression Conditional heteroscedasticity L1 geometric ergodicity Markov chain Multivariate AR-ARCH (CHARN) model;

    JEL classification:

    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:51:y:2001:i:2:p:121-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.