IDEAS home Printed from https://ideas.repec.org/a/spr/jenvss/v13y2023i3d10.1007_s13412-023-00838-5.html
   My bibliography  Save this article

Using EGARCH models to predict volatility in unconsolidated financial markets: the case of European carbon allowances

Author

Listed:
  • Elena Villar-Rubio

    (University of Granada)

  • María-Dolores Huete-Morales

    (University of Granada)

  • Federico Galán-Valdivieso

    (University of Almeria)

Abstract

The growing interest and direct impact of carbon trading in the economy have drawn an increasing attention to the evolution of the price of CO2 allowances (European Union Allowances, EUAs) under the European Union Emissions Trading Scheme (EU ETS). As a novel financial market, the dynamic analysis of its volatility is essential for policymakers to assess market efficiency and for investors to carry out an adequate risk management on carbon emission rights. In this research, the main autoregressive conditional heteroskedasticity (ARCH) models were applied to evaluate and analyze the volatility of daily data of the European carbon future prices, focusing on the last finished phase of market operations (phase III, 2013–2020), which is structurally and significantly different from previous phases. Some empirical findings derive from the results obtained. First, the EGARCH (1,1) model exhibits a superior ability to describe the price volatility even using fewer parameters, partly because it allows to collect the sign of the changes produced over time. In this model, the Akaike information criterion (AIC) is lower than ARCH (4) and GARCH (1,1) models, and all its coefficients are significative (p

Suggested Citation

  • Elena Villar-Rubio & María-Dolores Huete-Morales & Federico Galán-Valdivieso, 2023. "Using EGARCH models to predict volatility in unconsolidated financial markets: the case of European carbon allowances," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 13(3), pages 500-509, September.
  • Handle: RePEc:spr:jenvss:v:13:y:2023:i:3:d:10.1007_s13412-023-00838-5
    DOI: 10.1007/s13412-023-00838-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13412-023-00838-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13412-023-00838-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yufeng & Zheng, Biao & Qu, Fang, 2020. "Modeling the nexus of crude oil, new energy and rare earth in China: An asymmetric VAR-BEKK (DCC)-GARCH approach," Resources Policy, Elsevier, vol. 65(C).
    2. Charles, Amélie & Darné, Olivier & Fouilloux, Jessica, 2013. "Market efficiency in the European carbon markets," Energy Policy, Elsevier, vol. 60(C), pages 785-792.
    3. Michael McAleer & Christian M. Hafner, 2014. "A One Line Derivation of EGARCH," Econometrics, MDPI, vol. 2(2), pages 1-6, June.
    4. Barry Anderson & Corrado Di Maria, 2011. "Abatement and Allocation in the Pilot Phase of the EU ETS," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 83-103, January.
    5. Bentes, Sonia R., 2018. "Is stock market volatility asymmetric? A multi-period analysis for five countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 258-265.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    8. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2020. "The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal?," Utilities Policy, Elsevier, vol. 66(C).
    9. Ngo Thai Hung, 2021. "Volatility Behaviour of the Foreign Exchange Rate and Transmission Among Central and Eastern European Countries: Evidence from the EGARCH Model," Global Business Review, International Management Institute, vol. 22(1), pages 36-56, February.
    10. Barberis, Nicholas & Shleifer, Andrei & Vishny, Robert, 1998. "A model of investor sentiment," Journal of Financial Economics, Elsevier, vol. 49(3), pages 307-343, September.
    11. Federico Galán-Valdivieso & Elena Villar-Rubio & María-Dolores Huete-Morales, 2018. "The erratic behaviour of the EU ETS on the path towards consolidation and price stability," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(5), pages 689-706, October.
    12. Engle, Robert F, 1983. "Estimates of the Variance of U.S. Inflation Based upon the ARCH Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 15(3), pages 286-301, August.
    13. Koop, Gary & Tole, Lise, 2013. "Modeling the relationship between European carbon permits and certified emission reductions," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 166-181.
    14. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    15. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    16. Basel Maraqa & Murad Bein, 2020. "Dynamic Interrelationship and Volatility Spillover among Sustainability Stock Markets, Major European Conventional Indices, and International Crude Oil," Sustainability, MDPI, vol. 12(9), pages 1-14, May.
    17. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    18. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    19. Muhammad Mohsin & Li Naiwen & Muhammad Zia-UR-Rehman & Sobia Naseem & Sajjad Ahmad Baig, 2020. "The volatility of bank stock prices and macroeconomic fundamentals in the Pakistani context: an application of GARCH and EGARCH models," Oeconomia Copernicana, Institute of Economic Research, vol. 11(4), pages 609-636, December.
    20. Oikonomikou, Leoni Eleni, 2018. "Modeling financial market volatility in transition markets: a multivariate case," Research in International Business and Finance, Elsevier, vol. 45(C), pages 307-322.
    21. Lin, Yu & Xiao, Yang & Li, Fuxing, 2020. "Forecasting crude oil price volatility via a HM-EGARCH model," Energy Economics, Elsevier, vol. 87(C).
    22. Bangzhu Zhu & Shunxin Ye & Kaijian He & Julien Chevallier & Rui Xie, 2019. "Measuring the risk of European carbon market: an empirical mode decomposition-based value at risk approach," Annals of Operations Research, Springer, vol. 281(1), pages 373-395, October.
    23. Bera, Anil K & Higgins, Matthew L, 1993. "ARCH Models: Properties, Estimation and Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 7(4), pages 305-366, December.
    24. Thomas J. Fisher & Colin M. Gallagher, 2012. "New Weighted Portmanteau Statistics for Time Series Goodness of Fit Testing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 777-787, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu, Xunfa & He, Pengchao & Zhang, Zhengjun & Apergis, Nicholas, 2024. "Extreme co-movements between CO2 emission allowances and commodity markets and their response to economic policy uncertainty," Energy Economics, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, November.
    2. Shekar Bose & Hafizur Rahman, 2022. "Are News Effects Necessarily Asymmetric? Evidence from Bangladesh Stock Market," SAGE Open, , vol. 12(4), pages 21582440221, October.
    3. Sam Howison & David Lamper, 2001. "Trading volume in models of financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(2), pages 119-135.
    4. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    5. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    6. Jiangze Du & Shaojie Lai & Kin Keung Lai & Shifei Zhou, 2021. "A novel term structure stochastic model with adaptive correlation for trend analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5485-5498, October.
    7. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    8. repec:cte:wsrepe:5708 is not listed on IDEAS
    9. P. J. Dawson & A. L. Tiffin & B. White, 2000. "Optimal Hedging Ratios for Wheat and Barley at the LIFFE: A GARCH Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 51(2), pages 147-161, May.
    10. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    11. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    12. Sung Ik Kim, 2022. "ARMA–GARCH model with fractional generalized hyperbolic innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-25, December.
    13. Brooks, Robert D. & Faff, Robert W. & McKenzie, Michael D. & Mitchell, Heather, 2000. "A multi-country study of power ARCH models and national stock market returns," Journal of International Money and Finance, Elsevier, vol. 19(3), pages 377-397, June.
    14. Xekalaki, Evdokia & Degiannakis, Stavros, 2005. "Evaluating volatility forecasts in option pricing in the context of a simulated options market," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 611-629, April.
    15. Fatma SIALA GUERMEZI, & Amani BOUSSAADA, 2016. "The Weak Form Of Informational Efficiency: Case Of Tunisian Banking Sector," EcoForum, "Stefan cel Mare" University of Suceava, Romania, Faculty of Economics and Public Administration - Economy, Business Administration and Tourism Department., vol. 5(1), pages 1-1, January.
    16. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    17. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    19. Seungmook Choi & Don Hardigree & Paul D. Thistle, 2002. "The Property/Liability Insurance Cycle: A Comparison of Alternative Models," Southern Economic Journal, John Wiley & Sons, vol. 68(3), pages 530-548, January.
    20. Daly, Kevin, 2008. "Financial volatility: Issues and measuring techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2377-2393.
    21. Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jenvss:v:13:y:2023:i:3:d:10.1007_s13412-023-00838-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.