IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v215y2024ics0167715224001986.html
   My bibliography  Save this article

Replication in random translation designs

Author

Listed:
  • Waite, Timothy W.

Abstract

Replication is a commonly recommended feature of experimental designs. However, its impact in model-robust design is relatively under-explored; indeed, replication is impossible within the current formulation of random translation designs, which were introduced recently for model-robust prediction. Here we extend the framework of random translation designs to allow replication, and quantify the resulting performance impact. The extension permits a simplification of our earlier heuristic for constructing random translation strategies from a traditional V-optimal design. Namely, in the previous formulation any replicates of the V-optimal design first had to be split up before a random translation can be applied to the design points. With the new framework we can instead preserve the replicates instead if we so wish. Surprisingly, we find that in low-dimensional problems it is often substantially more efficient to continue to split replicates, while in high-dimensional problems it can be substantially better to retain replicates.

Suggested Citation

  • Waite, Timothy W., 2024. "Replication in random translation designs," Statistics & Probability Letters, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:stapro:v:215:y:2024:i:c:s0167715224001986
    DOI: 10.1016/j.spl.2024.110229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224001986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arno Strouwen & Bart M. Nicolaï & Peter Goos, 2023. "Adaptive and robust experimental design for linear dynamical models using Kalman filter," Statistical Papers, Springer, vol. 64(4), pages 1209-1231, August.
    2. Steven G. Gilmour & Luzia A. Trinca, 2012. "Optimum design of experiments for statistical inference," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(3), pages 345-401, May.
    3. Timothy W. Waite & David C. Woods, 2022. "Minimax Efficient Random Experimental Design Strategies With Application to Model-Robust Design for Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1452-1465, September.
    4. D Azriel, 2023. "Optimal minimax random designs for weighted least squares estimators," Biometrika, Biometrika Trust, vol. 110(1), pages 273-280.
    5. Linglong Kong & Douglas P. Wiens, 2015. "Model-Robust Designs for Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 233-245, March.
    6. A. C. Atkinson, 2015. "Optimum designs for two treatments with unequal variances in the presence of covariates," Biometrika, Biometrika Trust, vol. 102(2), pages 494-499.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smucker, Byran J. & Castillo, Enrique del & Rosenberger, James L., 2012. "Model-robust designs for split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4111-4121.
    2. Yu, Jun & Kong, Xiangshun & Ai, Mingyao & Tsui, Kwok Leung, 2018. "Optimal designs for dose–response models with linear effects of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 217-228.
    3. David Edwards, 2014. "Follow-up experiments for two-level fractional factorial designs via double semifoldover," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(4), pages 483-507, May.
    4. Yimin Huang & Xiangshun Kong & Mingyao Ai, 2020. "Optimal designs in sparse linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(2), pages 255-273, February.
    5. Smucker, Byran J. & Jensen, Willis & Wu, Zichen & Wang, Bo, 2017. "Robustness of classical and optimal designs to missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 251-260.
    6. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    7. da Silva, Marcelo A. & Gilmour, Steven G. & Trinca, Luzia A., 2017. "Factorial and response surface designs robust to missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 261-272.
    8. Andrea Beccarini, 2024. "Testing omitted variables in VARs," Statistical Papers, Springer, vol. 65(5), pages 3093-3109, July.
    9. Atkinson, Anthony C. & Biswas, Atanu, 2017. "Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses," LSE Research Online Documents on Economics 66761, London School of Economics and Political Science, LSE Library.
    10. Kai Yzenbrandt & Julie Zhou, 2022. "Minimax robust designs for regression models with heteroscedastic errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 203-222, February.
    11. Lianyan Fu & Faming Ma & Zhuoxi Yu & Zhichuan Zhu, 2023. "Multiplication Algorithms for Approximate Optimal Distributions with Cost Constraints," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    12. Atkinson, Anthony C. & Biswas, Atanu, 2017. "Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 297-310.
    13. Peng, Cheng & Kouri, Drew P. & Uryasev, Stan, 2024. "Efficient and robust optimal design for quantile regression based on linear programming," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    14. Borrotti, Matteo & Sambo, Francesco & Mylona, Kalliopi, 2023. "Multi-objective optimisation of split-plot designs," Econometrics and Statistics, Elsevier, vol. 28(C), pages 163-172.
    15. Qiong Zhang & Amin Khademi & Yongjia Song, 2022. "Min-Max Optimal Design of Two-Armed Trials with Side Information," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 165-182, January.
    16. Belmiro P. M. Duarte & Anthony C. Atkinson & David Pedrosa & Marlena van Munster, 2024. "Compound Optimum Designs for Clinical Trials in Personalized Medicine," Mathematics, MDPI, vol. 12(19), pages 1-20, September.
    17. Leonard, Robert D. & Edwards, David J., 2017. "Bayesian D-optimal screening experiments with partial replication," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 79-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:215:y:2024:i:c:s0167715224001986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.