IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v102y2015i2p494-499..html
   My bibliography  Save this article

Optimum designs for two treatments with unequal variances in the presence of covariates

Author

Listed:
  • A. C. Atkinson

Abstract

Optimum designs are described for two treatments with different variances when covariates are included in the model. The designs, a generalization of Neyman allocation, are required in personalized medicine to model the effect of covariates on the choice of treatment. The use of the designs in clinical trials is indicated. D-optimality of the designs is established using results from Kiefer’s general equivalence theorem. The results are obtained with the use of surprisingly elementary algebra.

Suggested Citation

  • A. C. Atkinson, 2015. "Optimum designs for two treatments with unequal variances in the presence of covariates," Biometrika, Biometrika Trust, vol. 102(2), pages 494-499.
  • Handle: RePEc:oup:biomet:v:102:y:2015:i:2:p:494-499.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asu071
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    2. Atkinson, Anthony C. & Biswas, Atanu, 2017. "Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 297-310.
    3. Atkinson, Anthony C. & Biswas, Atanu, 2017. "Optimal response and covariate-adaptive biased-coin designs for clinical trials with continuous multivariate or longitudinal responses," LSE Research Online Documents on Economics 66761, London School of Economics and Political Science, LSE Library.
    4. Yu, Jun & Kong, Xiangshun & Ai, Mingyao & Tsui, Kwok Leung, 2018. "Optimal designs for dose–response models with linear effects of covariates," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 217-228.
    5. Qiong Zhang & Amin Khademi & Yongjia Song, 2022. "Min-Max Optimal Design of Two-Armed Trials with Side Information," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 165-182, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:102:y:2015:i:2:p:494-499.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.