IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v115y2017icp79-90.html
   My bibliography  Save this article

Bayesian D-optimal screening experiments with partial replication

Author

Listed:
  • Leonard, Robert D.
  • Edwards, David J.

Abstract

Screening designs are frequently used in the initial stages of experimentation with the goal of identifying important main effects as well as to gain insight on potentially important two-factor interactions. Commonly utilized experimental designs for screening are unreplicated and as such, provide no unbiased estimate of experimental error. However, if statistical inference is to be performed as part of the experimental analysis, one view is that inferential procedures should be performed using a model independent error estimate instead of the residual mean square from the fitted model. As full replication of an experiment may be quite costly, partial replication offers an alternative. Gilmour and Trinca (2012) introduce criteria for constructing optimal designs for statistical inference (and hence, provide for optimal selection of replicate design points). An extension of their work is introduced by modifying the popular Bayesian D-optimality criterion to construct partially replicated screening designs with less dependence on an assumed model. Designs are compared using various criteria and a simulation study is conducted to investigate design performance with respect to power and false discovery rates.

Suggested Citation

  • Leonard, Robert D. & Edwards, David J., 2017. "Bayesian D-optimal screening experiments with partial replication," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 79-90.
  • Handle: RePEc:eee:csdana:v:115:y:2017:i:c:p:79-90
    DOI: 10.1016/j.csda.2017.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317301275
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven G. Gilmour & Luzia A. Trinca, 2012. "Optimum design of experiments for statistical inference," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(3), pages 345-401, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smucker, Byran J. & Castillo, Enrique del & Rosenberger, James L., 2012. "Model-robust designs for split-plot experiments," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4111-4121.
    2. David Edwards, 2014. "Follow-up experiments for two-level fractional factorial designs via double semifoldover," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(4), pages 483-507, May.
    3. Yimin Huang & Xiangshun Kong & Mingyao Ai, 2020. "Optimal designs in sparse linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(2), pages 255-273, February.
    4. Smucker, Byran J. & Jensen, Willis & Wu, Zichen & Wang, Bo, 2017. "Robustness of classical and optimal designs to missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 251-260.
    5. da Silva, Marcelo A. & Gilmour, Steven G. & Trinca, Luzia A., 2017. "Factorial and response surface designs robust to missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 261-272.
    6. Lianyan Fu & Faming Ma & Zhuoxi Yu & Zhichuan Zhu, 2023. "Multiplication Algorithms for Approximate Optimal Distributions with Cost Constraints," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    7. Borrotti, Matteo & Sambo, Francesco & Mylona, Kalliopi, 2023. "Multi-objective optimisation of split-plot designs," Econometrics and Statistics, Elsevier, vol. 28(C), pages 163-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:115:y:2017:i:c:p:79-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.