IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v195y2023ics0167715223000147.html
   My bibliography  Save this article

Reweighted madogram-type estimator of Pickands dependence function

Author

Listed:
  • Zou, Nan

Abstract

This work proposes a reweighted, madogram-type estimator for the Pickands dependence function of bivariate time series and illustrates how it brings down the asymptotic bias and the overall mean squared error.

Suggested Citation

  • Zou, Nan, 2023. "Reweighted madogram-type estimator of Pickands dependence function," Statistics & Probability Letters, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:stapro:v:195:y:2023:i:c:s0167715223000147
    DOI: 10.1016/j.spl.2023.109790
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715223000147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2023.109790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2017. "Multivariate nonparametric estimation of the Pickands dependence function using Bernstein polynomials," LIDAM Reprints ISBA 2017003, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Bucher, Axel & Segers, Johan, 2014. "Extreme value copula estimation based on block maxima of a multivariate stationary time series," LIDAM Reprints ISBA 2014019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Philippe Naveau & Armelle Guillou & Daniel Cooley & Jean Diebolt, 2009. "Modelling pairwise dependence of maxima in space," Biometrika, Biometrika Trust, vol. 96(1), pages 1-17.
    4. Segers, Johan, 2012. "Nonparametric Inference for Max-Stable Dependence," LIDAM Reprints ISBA 2012007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Gudendorf, Gordon & Segers, Johan, 2012. "Nonparametric estimation of multivariate extreme-value copulas," LIDAM Reprints ISBA 2012011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boulin, Alexis & Di Bernardino, Elena & Laloë, Thomas & Toulemonde, Gwladys, 2022. "Non-parametric estimator of a multivariate madogram for missing-data and extreme value framework," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. Enkelejd Hashorva & Simone A. Padoan & Stefano Rizzelli, 2021. "Multivariate extremes over a random number of observations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 845-880, September.
    3. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    4. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Berghaus, Betina & Segers, Johan, 2018. "Weak convergence of the weighted empirical beta copula process," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 266-281.
    6. Bücher, Axel & Volgushev, Stanislav & Zou, Nan, 2019. "On second order conditions in the multivariate block maxima and peak over threshold method," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 604-619.
    7. Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.
    8. Grothe, Oliver & Schnieders, Julius & Segers, Johan, 2013. "Measuring Association and Dependence Between Random Vectors," LIDAM Discussion Papers ISBA 2013026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Bucher, Axel & Segers, Johan & Volgushev, Stanislav, 2013. "When uniform weak convergence fails: empirical processes for dependence functions via epi- and hypographs," LIDAM Discussion Papers ISBA 2013019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Bucher, Axel & Segers, Johan, 2013. "Extreme value copula estimation based on block maxima of a multivariate stationary time series," LIDAM Discussion Papers ISBA 2013049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    11. Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Other publications TiSEM a3e7350b-4773-4bd8-9c3c-6, Tilburg University, School of Economics and Management.
    12. Gardes, Laurent & Girard, Stéphane, 2015. "Nonparametric estimation of the conditional tail copula," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 1-16.
    13. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    14. Papastathopoulos, Ioannis & Strokorb, Kirstin, 2016. "Conditional independence among max-stable laws," Statistics & Probability Letters, Elsevier, vol. 108(C), pages 9-15.
    15. Ferreira, Helena & Ferreira, Marta, 2018. "Multidimensional extremal dependence coefficients," Statistics & Probability Letters, Elsevier, vol. 133(C), pages 1-8.
    16. Guillou, Armelle & Padoan, Simone A. & Rizzelli, Stefano, 2018. "Inference for asymptotically independent samples of extremes," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 114-135.
    17. Keef, Caroline & Papastathopoulos, Ioannis & Tawn, Jonathan A., 2013. "Estimation of the conditional distribution of a multivariate variable given that one of its components is large: Additional constraints for the Heffernan and Tawn model," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 396-404.
    18. Zofia Gródek-Szostak & Gabriela Malik & Danuta Kajrunajtys & Anna Szeląg-Sikora & Jakub Sikora & Maciej Kuboń & Marcin Niemiec & Joanna Kapusta-Duch, 2019. "Modeling the Dependency between Extreme Prices of Selected Agricultural Products on the Derivatives Market Using the Linkage Function," Sustainability, MDPI, vol. 11(15), pages 1-14, August.
    19. Yongzhao Chen & Ka Chun Cheung & Sheung Chi Phillip Yam & Fei Lung Yuen & Jia Zeng, 2023. "On the Diversification Effect in Solvency II for Extremely Dependent Risks," Risks, MDPI, vol. 11(8), pages 1-22, August.
    20. Bucher, Axel & Segers, Johan, 2015. "Maximum likelihood estimation for the Frechet distribution based on block maxima extracted from a time series," LIDAM Discussion Papers ISBA 2015023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:195:y:2023:i:c:s0167715223000147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.