IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v189y2022ics0167715222001274.html
   My bibliography  Save this article

On the rate of convergence for the autocorrelation operator in functional autoregression

Author

Listed:
  • Caponera, Alessia
  • Panaretos, Victor M.

Abstract

We consider the problem of estimating the autocorrelation operator of an autoregressive Hilbertian process. By means of a Tikhonov approach, we establish a general result that yields the convergence rate of the estimated autocorrelation operator as a function of the rate of convergence of the estimated lag zero and lag one autocovariance operators. The result is general in that it can accommodate any consistent estimators of the lagged autocovariances. Consequently it can be applied to processes under any mode of observation: complete, discrete, sparse, and/or with measurement errors. An appealing feature is that the result does not require delicate spectral decay assumptions on the autocovariances but instead rests on natural source conditions. The result is illustrated by application to important special cases.

Suggested Citation

  • Caponera, Alessia & Panaretos, Victor M., 2022. "On the rate of convergence for the autocorrelation operator in functional autoregression," Statistics & Probability Letters, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:stapro:v:189:y:2022:i:c:s0167715222001274
    DOI: 10.1016/j.spl.2022.109575
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222001274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Ruiz-Medina, María D. & Álvarez-Liébana, Javier, 2019. "Strongly consistent autoregressive predictors in abstract Banach spaces," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 186-201.
    3. Mas, André, 2007. "Weak convergence in the functional autoregressive model," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1231-1261, July.
    4. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    5. Antoniadis, Anestis & Sapatinas, Theofanis, 2003. "Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 133-158, October.
    6. Guillas, Serge, 2001. "Rates of convergence of autocorrelation estimates for autoregressive Hilbertian processes," Statistics & Probability Letters, Elsevier, vol. 55(3), pages 281-291, December.
    7. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Álvarez-Liébana, Javier & Bosq, Denis & Ruiz-Medina, María D., 2016. "Consistency of the plug-in functional predictor of the Ornstein–Uhlenbeck process in Hilbert and Banach spaces," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 12-22.
    2. Álvarez-Liébana, J. & Bosq, D. & Ruiz-Medina, M.D., 2017. "Asymptotic properties of a component-wise ARH(1) plug-in predictor," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 12-34.
    3. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    4. Chen, Ying & Chua, Wee Song & Härdle, Wolfgang Karl, 2016. "Forecasting limit order book liquidity supply-demand curves with functional AutoRegressive dynamics," SFB 649 Discussion Papers 2016-025, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. repec:hum:wpaper:sfb649dp2016-025 is not listed on IDEAS
    6. Ying Chen & Wee Song Chua & Wolfgang Karl Härdle, 2019. "Forecasting limit order book liquidity supply–demand curves with functional autoregressive dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1473-1489, September.
    7. Qiu, Zhiping & Fan, Jiangyuan & Zhang, Jin-Ting & Chen, Jianwei, 2024. "Tests for equality of several covariance matrix functions for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    8. M. D. Ruiz-Medina & D. Miranda & R. M. Espejo, 2019. "Dynamical multiple regression in function spaces, under kernel regressors, with ARH(1) errors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 943-968, September.
    9. Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Ruiz-Medina, M.D. & Álvarez-Liébana, J., 2019. "A note on strong-consistency of componentwise ARH(1) predictors," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 224-228.
    11. Xu, Meng & Li, Jialiang & Chen, Ying, 2017. "Varying coefficient functional autoregressive model with application to the U.S. treasuries," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 168-183.
    12. Kokoszka, Piotr & Kulik, Rafał, 2023. "Principal component analysis of infinite variance functional data," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    13. Boukhiar, Souad & Mourid, Tahar, 2022. "Resolvent estimators for functional autoregressive processes with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Chen, Di-Rong & Cheng, Kun & Liu, Chao, 2022. "Framelet block thresholding estimator for sparse functional data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Jiang, Jiakun & Lin, Huazhen & Zhong, Qingzhi & Li, Yi, 2022. "Analysis of multivariate non-gaussian functional data: A semiparametric latent process approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    17. Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. A. Soltani & M. Hashemi, 2011. "Periodically correlated autoregressive Hilbertian processes," Statistical Inference for Stochastic Processes, Springer, vol. 14(2), pages 177-188, May.
    19. Wang, Jingxing & Chung, Seokhyun & AlShelahi, Abdullah & Kontar, Raed & Byon, Eunshin & Saigal, Romesh, 2021. "Look-ahead decision making for renewable energy: A dynamic “predict and store” approach," Applied Energy, Elsevier, vol. 296(C).
    20. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    21. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:189:y:2022:i:c:s0167715222001274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.