IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v186y2022ics0167715222000669.html
   My bibliography  Save this article

A new random field on lattices

Author

Listed:
  • Martins, Ana Paula
  • Ferreira, Helena
  • Ferreira, Marta

Abstract

The risk of occurrence of atypical phenomena is a cross-cutting concern in several areas, such as engineering, climatology, finance, actuarial, among others. Extreme value theory is the natural tool to approach this theme. Many of these random phenomena carry variables defined in time and space, usually modeled through random fields. Thus, the study of random fields in the context of extreme values becomes imperative and has been developed especially in the last decade. In this work, we propose a new random field, called pMAX, designed for modeling extremes. We analyze its dependence and pre-asymptotic dependence structure through the corresponding bivariate tail dependence coefficients. Estimators for the model parameters are obtained and their finite sample properties analyzed. Examples with simulations illustrate the results.

Suggested Citation

  • Martins, Ana Paula & Ferreira, Helena & Ferreira, Marta, 2022. "A new random field on lattices," Statistics & Probability Letters, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:stapro:v:186:y:2022:i:c:s0167715222000669
    DOI: 10.1016/j.spl.2022.109478
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222000669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferreira, Helena & Ferreira, Marta, 2014. "Extremal behavior of pMAX processes," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 46-57.
    2. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    3. Jennifer L. Wadsworth & Jonathan A. Tawn, 2012. "Dependence modelling for spatial extremes," Biometrika, Biometrika Trust, vol. 99(2), pages 253-272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Ferreira & Helena Ferreira, 2017. "Analyzing the Gaver—Lewis Pareto Process under an Extremal Perspective," Risks, MDPI, vol. 5(3), pages 1-12, June.
    2. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    3. Brito, Margarida & Freitas, Ana Cristina Moreira, 2008. "Edgeworth expansion for an estimator of the adjustment coefficient," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 203-208, October.
    4. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    5. John H. J. Einmahl & Sander G. W. R. Smeets, 2011. "Ultimate 100‐m world records through extreme‐value theory," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(1), pages 32-42, February.
    6. Zhou, Chen, 2009. "Existence and consistency of the maximum likelihood estimator for the extreme value index," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 794-815, April.
    7. Einmahl, John & He, Y., 2022. "Extreme Value Inference for General Heterogeneous Data," Other publications TiSEM fd8dd91c-086f-40e6-ac29-3, Tilburg University, School of Economics and Management.
    8. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    9. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    10. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    11. Christian Schluter & Mark Trede, 2019. "Size distributions reconsidered," Econometric Reviews, Taylor & Francis Journals, vol. 38(6), pages 695-710, July.
    12. Iglesias, Emma M. & Linton, Oliver, 2009. "Estimation of tail thickness parameters from GJR-GARCH models," UC3M Working papers. Economics we094726, Universidad Carlos III de Madrid. Departamento de Economía.
    13. Einmahl, J.H.J. & Li, J. & Liu, R.Y., 2006. "Extreme Value Theory Approach to Simultaneous Monitoring and Thresholding of Multiple Risk Indicators," Other publications TiSEM 4e0aab6a-b885-4a21-a898-2, Tilburg University, School of Economics and Management.
    14. Einmahl, J.H.J. & Fils-Villetard, A. & Guillou, A., 2006. "Statistics of Extremes under Random Censoring," Other publications TiSEM 62d47475-e6e9-43d6-9461-5, Tilburg University, School of Economics and Management.
    15. Curtis B. Storlie & Brian J. Reich & William N. Rust & Lawrence O. Ticknor & Amanda M. Bonnie & Andrew J. Montoya & Sarah E. Michalak, 2017. "Spatiotemporal Modeling of Node Temperatures in Supercomputers," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 92-108, January.
    16. Khan, Shakeeb & Nekipelov, Denis, 2024. "On uniform inference in nonlinear models with endogeneity," Journal of Econometrics, Elsevier, vol. 240(2).
    17. Hsieh, Ping-Hung, 2002. "An exploratory first step in teletraffic data modeling: evaluation of long-run performance of parameter estimators," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 263-283, August.
    18. Robert, Christian Y., 2013. "Some new classes of stationary max-stable random fields," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1496-1503.
    19. V. A. Pavlenko, 2017. "Estimation of the upper bound of seismic hazard curve by using the generalised extreme value distribution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(1), pages 19-33, October.
    20. Gadea Rivas, María Dolores & Gonzalo, Jesús & Olmo, José, 2024. "Testing extreme warming and geographical heterogeneity," UC3M Working papers. Economics 45023, Universidad Carlos III de Madrid. Departamento de Economía.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:186:y:2022:i:c:s0167715222000669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.