IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i18p3988-d1243486.html
   My bibliography  Save this article

Ratio Test for Mean Changes in Time Series with Heavy-Tailed AR( p ) Noise Based on Multiple Sampling Methods

Author

Listed:
  • Tianming Xu

    (School of Mathematical Science, Huaibei Normal University, Huaibei 235099, China)

  • Yuesong Wei

    (School of Mathematical Science, Huaibei Normal University, Huaibei 235099, China
    Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710060, China)

Abstract

This paper discusses the problem of the mean changes in time series with heavy-tailed AR( p ) noise. Firstly, it proposes a modified ratio-type test statistic, and the results show that under the null hypothesis of no mean change, the asymptotic distribution of the modified statistic is a functional of Lévy processes and the consistency under the alternative hypothesis is obtained. However, a heavy-tailed index exists in the asymptotic distribution and is difficult to estimate. This paper uses bootstrap sampling, jackknife sampling, and subsampling to approximate the distribution under the null hypothesis, and obtain more accurate critical values and empirical power. In addition, some results from a small simulation study and a practical example give an idea of the finite sample behavior of the proposed statistic.

Suggested Citation

  • Tianming Xu & Yuesong Wei, 2023. "Ratio Test for Mean Changes in Time Series with Heavy-Tailed AR( p ) Noise Based on Multiple Sampling Methods," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3988-:d:1243486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/18/3988/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/18/3988/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    2. Jin, Hao & Tian, Zheng & Qin, Ruibing, 2009. "Bootstrap tests for structural change with infinite variance observations," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 1985-1995, October.
    3. Timothy L. McMurry & Dimitris N. Politis, 2010. "Banded and tapered estimates for autocovariance matrices and the linear process bootstrap," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(6), pages 471-482, November.
    4. Piotr Kokoszka & Michael Wolf, 2004. "Subsampling the mean of heavy‐tailed dependent observations," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 217-234, March.
    5. Lajos Horváth & Gregory Rice, 2014. "Rejoinder on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 287-290, June.
    6. McMurry, Timothy L & Politis, D N, 2010. "Banded and Tapered Estimates for Autocovariance Matrices and the Linear Process Bootstrap," University of California at San Diego, Economics Working Paper Series qt5h9259mb, Department of Economics, UC San Diego.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Daniela Jarušková, 2015. "Detecting non-simultaneous changes in means of vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 681-700, December.
    3. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    4. Stergios B. Fotopoulos & Abhishek Kaul & Vasileios Pavlopoulos & Venkata K. Jandhyala, 2024. "Adaptive parametric change point inference under covariance structure changes," Statistical Papers, Springer, vol. 65(5), pages 2887-2913, July.
    5. Petropoulos, Fotios & Hyndman, Rob J. & Bergmeir, Christoph, 2018. "Exploring the sources of uncertainty: Why does bagging for time series forecasting work?," European Journal of Operational Research, Elsevier, vol. 268(2), pages 545-554.
    6. Jaromír Antoch & Jan Hanousek & Lajos Horváth & Marie Hušková & Shixuan Wang, 2019. "Structural breaks in panel data: Large number of panels and short length time series," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 828-855, August.
    7. Fabrizio Ghezzi & Eduardo Rossi & Lorenzo Trapani, 2024. "Fast Online Changepoint Detection," Papers 2402.04433, arXiv.org.
    8. Lajos Horváth & Zhenya Liu & Curtis Miller & Weiqing Tang, 2024. "Breaks in term structures: Evidence from the oil futures markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2317-2341, April.
    9. Yudong Chen & Tengyao Wang & Richard J. Samworth, 2022. "High‐dimensional, multiscale online changepoint detection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(1), pages 234-266, February.
    10. Gonçalves, Sílvia & Perron, Benoit, 2020. "Bootstrapping factor models with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 218(2), pages 476-495.
    11. Chen, Yudong & Wang, Tengyao & Samworth, Richard J., 2022. "High-dimensional, multiscale online changepoint detection," LSE Research Online Documents on Economics 113665, London School of Economics and Political Science, LSE Library.
    12. Jin, Hao & Zhang, Jinsuo & Zhang, Si & Yu, Cong, 2013. "The spurious regression of AR(p) infinite-variance sequence in the presence of structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 25-40.
    13. Gautam Sabnis & Debdeep Pati & Anirban Bhattacharya, 2019. "Compressed Covariance Estimation with Automated Dimension Learning," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 466-481, December.
    14. Ricardo C. Pedroso & Rosangela H. Loschi & Fernando Andrés Quintana, 2023. "Multipartition model for multiple change point identification," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 759-783, June.
    15. Politis, Dimitris, 2014. "High-dimensional autocovariance matrices and optimal linear prediction," University of California at San Diego, Economics Working Paper Series qt3k58p0xr, Department of Economics, UC San Diego.
    16. Jiang, Feiyu & Wang, Runmin & Shao, Xiaofeng, 2023. "Robust inference for change points in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    17. Jonas Krampe & Timothy L. McMurry, 2021. "Estimating wold matrices and vector moving average processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 201-221, March.
    18. Federico A. Bugni & Jia Li & Qiyuan Li, 2023. "Permutation‐based tests for discontinuities in event studies," Quantitative Economics, Econometric Society, vol. 14(1), pages 37-70, January.
    19. Claudia Kirch & Christina Stoehr, 2022. "Sequential change point tests based on U‐statistics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1184-1214, September.
    20. Kleiber, Christian, 2016. "Structural Change in (Economic) Time Series," Working papers 2016/06, Faculty of Business and Economics - University of Basel.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:18:p:3988-:d:1243486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.