IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v180y2022ics0167715221002017.html
   My bibliography  Save this article

Dependence and mixing for perturbations of copula-based Markov chains

Author

Listed:
  • Longla, Martial
  • Muia Nthiani, Mathias
  • Djongreba Ndikwa, Fidel

Abstract

This paper explores the impact of perturbations of copulas on dependence properties of the Markov chains they generate. We use an observation that is valid for convex combinations of copulas to establish sufficient conditions for the mixing coefficients ρn, αn and some other measures of association. New copula families are derived based on perturbations of copulas and their multivariate analogs for n-copulas are provided in general. Several families of copulas can be constructed from the provided framework.

Suggested Citation

  • Longla, Martial & Muia Nthiani, Mathias & Djongreba Ndikwa, Fidel, 2022. "Dependence and mixing for perturbations of copula-based Markov chains," Statistics & Probability Letters, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:stapro:v:180:y:2022:i:c:s0167715221002017
    DOI: 10.1016/j.spl.2021.109239
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221002017
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1165-1185, December.
    2. Ibragimov, Rustam, 2009. "Copula-Based Characterizations For Higher Order Markov Processes," Econometric Theory, Cambridge University Press, vol. 25(3), pages 819-846, June.
    3. Brendan K. Beare, 2010. "Copulas and Temporal Dependence," Econometrica, Econometric Society, vol. 78(1), pages 395-410, January.
    4. Merlevède, Florence & Peligrad, Magda, 2020. "Functional CLT for nonstationary strongly mixing processes," Statistics & Probability Letters, Elsevier, vol. 156(C).
    5. Longla, Martial, 2015. "On mixtures of copulas and mixing coefficients," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 259-265.
    6. Longla, Martial & Peligrad, Magda, 2012. "Some aspects of modeling dependence in copula-based Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 234-240.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachariah, Swaroop Georgy & Arshad, Mohd. & Pathak, Ashok Kumar, 2024. "A new class of copulas having dependence range larger than FGM-type copulas," Statistics & Probability Letters, Elsevier, vol. 206(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohong Chen & Zhijie Xiao & Bo Wang, 2020. "Copula-Based Time Series With Filtered Nonstationarity," Cowles Foundation Discussion Papers 2242, Cowles Foundation for Research in Economics, Yale University.
    2. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    3. Chen, Xiaohong & Xiao, Zhijie & Wang, Bo, 2022. "Copula-based time series with filtered nonstationarity," Journal of Econometrics, Elsevier, vol. 228(1), pages 127-155.
    4. Bladt, Martin & McNeil, Alexander J., 2022. "Time series copula models using d-vines and v-transforms," Econometrics and Statistics, Elsevier, vol. 24(C), pages 27-48.
    5. Nagler, Thomas & Krüger, Daniel & Min, Aleksey, 2022. "Stationary vine copula models for multivariate time series," Journal of Econometrics, Elsevier, vol. 227(2), pages 305-324.
    6. Martial Longla, 2024. "New copula families and mixing properties," Statistical Papers, Springer, vol. 65(7), pages 4331-4363, September.
    7. Bladt Martin & McNeil Alexander J., 2022. "Time series with infinite-order partial copula dependence," Dependence Modeling, De Gruyter, vol. 10(1), pages 87-107, January.
    8. Brendan K. Beare & Juwon Seo, 2015. "Vine Copula Specifications for Stationary Multivariate Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 228-246, March.
    9. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
    10. Fang, Jun & Jiang, Fan & Liu, Yong & Yang, Jingping, 2020. "Copula-based Markov process," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 166-187.
    11. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    12. Liang Zhu & Christine Lim & Wenjun Xie & Yuan Wu, 2017. "Analysis of tourism demand serial dependence structure for forecasting," Tourism Economics, , vol. 23(7), pages 1419-1436, November.
    13. Cherubini, Umberto & Mulinacci, Sabrina & Romagnoli, Silvia, 2011. "A copula-based model of speculative price dynamics in discrete time," Journal of Multivariate Analysis, Elsevier, vol. 102(6), pages 1047-1063, July.
    14. Longla, Martial, 2015. "On mixtures of copulas and mixing coefficients," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 259-265.
    15. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
    16. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    17. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    18. Martin Bladt & Alexander J. McNeil, 2021. "Time series models with infinite-order partial copula dependence," Papers 2107.00960, arXiv.org.
    19. Richard C. Bradley, 2021. "On some basic features of strictly stationary, reversible Markov chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 499-533, September.
    20. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:180:y:2022:i:c:s0167715221002017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.