IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v139y2015icp259-265.html
   My bibliography  Save this article

On mixtures of copulas and mixing coefficients

Author

Listed:
  • Longla, Martial

Abstract

We show that if the density of the absolutely continuous part of a copula is bounded away from zero on a set of Lebesgue measure 1, then that copula generates “lower ψ-mixing” stationary Markov chains. This conclusion implies ϕ-mixing, ρ-mixing, β-mixing and “interlaced ρ-mixing”. We also provide some new results on the mixing structure of Markov chains generated by mixtures of copulas.

Suggested Citation

  • Longla, Martial, 2015. "On mixtures of copulas and mixing coefficients," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 259-265.
  • Handle: RePEc:eee:jmvana:v:139:y:2015:i:c:p:259-265
    DOI: 10.1016/j.jmva.2015.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15000755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brendan K. Beare, 2010. "Copulas and Temporal Dependence," Econometrica, Econometric Society, vol. 78(1), pages 395-410, January.
    2. Bradley, Richard C., 1997. "Every "lower psi-mixing" Markov chain is "interlaced rho-mixing"," Stochastic Processes and their Applications, Elsevier, vol. 72(2), pages 221-239, December.
    3. Longla, Martial & Peligrad, Magda, 2012. "Some aspects of modeling dependence in copula-based Markov chains," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 234-240.
    4. Beare, Brendan K., 2012. "Archimedean Copulas And Temporal Dependence," Econometric Theory, Cambridge University Press, vol. 28(6), pages 1165-1185, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longla, Martial & Muia Nthiani, Mathias & Djongreba Ndikwa, Fidel, 2022. "Dependence and mixing for perturbations of copula-based Markov chains," Statistics & Probability Letters, Elsevier, vol. 180(C).
    2. Shulin Zhang & Qian M. Zhou & Huazhen Lin, 2021. "Goodness-of-fit test of copula functions for semi-parametric univariate time series models," Statistical Papers, Springer, vol. 62(4), pages 1697-1721, August.
    3. Martial Longla, 2024. "New copula families and mixing properties," Statistical Papers, Springer, vol. 65(7), pages 4331-4363, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaohong Chen & Zhijie Xiao & Bo Wang, 2020. "Copula-Based Time Series With Filtered Nonstationarity," Cowles Foundation Discussion Papers 2242R, Cowles Foundation for Research in Economics, Yale University, revised Oct 2020.
    2. Nagler, Thomas & Krüger, Daniel & Min, Aleksey, 2022. "Stationary vine copula models for multivariate time series," Journal of Econometrics, Elsevier, vol. 227(2), pages 305-324.
    3. Chen, Xiaohong & Xiao, Zhijie & Wang, Bo, 2022. "Copula-based time series with filtered nonstationarity," Journal of Econometrics, Elsevier, vol. 228(1), pages 127-155.
    4. Martial Longla, 2024. "New copula families and mixing properties," Statistical Papers, Springer, vol. 65(7), pages 4331-4363, September.
    5. Fang Han, 2018. "An Exponential Inequality for U-Statistics Under Mixing Conditions," Journal of Theoretical Probability, Springer, vol. 31(1), pages 556-578, March.
    6. Martin Bladt & Alexander J. McNeil, 2021. "Time series models with infinite-order partial copula dependence," Papers 2107.00960, arXiv.org.
    7. Bladt, Martin & McNeil, Alexander J., 2022. "Time series copula models using d-vines and v-transforms," Econometrics and Statistics, Elsevier, vol. 24(C), pages 27-48.
    8. Bladt Martin & McNeil Alexander J., 2022. "Time series with infinite-order partial copula dependence," Dependence Modeling, De Gruyter, vol. 10(1), pages 87-107, January.
    9. Richard C. Bradley, 2021. "On some basic features of strictly stationary, reversible Markov chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 499-533, September.
    10. Longla, Martial & Muia Nthiani, Mathias & Djongreba Ndikwa, Fidel, 2022. "Dependence and mixing for perturbations of copula-based Markov chains," Statistics & Probability Letters, Elsevier, vol. 180(C).
    11. Brendan K. Beare & Juwon Seo, 2015. "Vine Copula Specifications for Stationary Multivariate Markov Chains," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 228-246, March.
    12. Righi, Marcelo Brutti & Ceretta, Paulo Sergio, 2013. "Estimating non-linear serial and cross-interdependence between financial assets," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 837-846.
    13. Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
    14. Demian Pouzo, 2015. "On the Non-Asymptotic Properties of Regularized M-estimators," Papers 1512.06290, arXiv.org, revised Oct 2016.
    15. Rubén Loaiza‐Maya & Michael S. Smith & Worapree Maneesoonthorn, 2018. "Time series copulas for heteroskedastic data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 332-354, April.
    16. Fang, Jun & Jiang, Fan & Liu, Yong & Yang, Jingping, 2020. "Copula-based Markov process," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 166-187.
    17. Aristidis K. Nikoloulopoulos & Peter G. Moffatt, 2019. "Coupling Couples With Copulas: Analysis Of Assortative Matching On Risk Attitude," Economic Inquiry, Western Economic Association International, vol. 57(1), pages 654-666, January.
    18. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    19. Fan, Yanqin & Han, Fang & Park, Hyeonseok, 2023. "Estimation and inference in a high-dimensional semiparametric Gaussian copula vector autoregressive model," Journal of Econometrics, Elsevier, vol. 237(1).
    20. Alexander J. McNeil, 2020. "Modelling volatile time series with v-transforms and copulas," Papers 2002.10135, arXiv.org, revised Jan 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:139:y:2015:i:c:p:259-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.