IDEAS home Printed from https://ideas.repec.org/p/zbw/iwqwdp/062017.html
   My bibliography  Save this paper

New concepts of symmetry for copulas

Author

Listed:
  • Mangold, Benedikt

Abstract

This paper introduces two new concepts of symmetry for multivariate copulas with a focus on tails regions. Properties of the symmetry concepts are investigated for bivariate copulas and a connection to radial symmetry is established. Two nonparametric testing procedures for the new concepts are developed using a vector of locally most powerful rank test statistics, applied to a new generalization of the FGM copula which parameterizes every vertex of the unit cube. This vector quantities deviations from independence in each vertex and the tests for the new symmetry concepts are based on comparisons of these deviations. It is shown that one of the new tests can also be used to test for radial symmetry, which results in a similar power of detecting bivariate radial symmetry compared to recently published nonparametric tests. Further, an application to insurance data is provided. Finally, an improvement of the selection process in the context of vine copula fitting is proposed that is based on the elimination of copula families with unsuitable symmetry properties.

Suggested Citation

  • Mangold, Benedikt, 2017. "New concepts of symmetry for copulas," FAU Discussion Papers in Economics 06/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics, revised 2017.
  • Handle: RePEc:zbw:iwqwdp:062017
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/157809/1/886854490.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mangold, Benedikt, 2017. "A multivariate rank test of independence based on a multiparametric polynomial copula," FAU Discussion Papers in Economics 10/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics, revised 2017.
    2. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    3. Bo Li & Marc G. Genton, 2013. "Nonparametric Identification of Copula Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 666-675, June.
    4. Christian Genest & Johanna Nešlehová, 2014. "On tests of radial symmetry for bivariate copulas," Statistical Papers, Springer, vol. 55(4), pages 1107-1119, November.
    5. Joe, H., 1993. "Parametric Families of Multivariate Distributions with Given Margins," Journal of Multivariate Analysis, Elsevier, vol. 46(2), pages 262-282, August.
    6. Fang, Hong-Bin & Fang, Kai-Tai & Kotz, Samuel, 2002. "The Meta-elliptical Distributions with Given Marginals," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 1-16, July.
    7. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    8. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
    9. Dominique Guegan & Pierre-André Maugis, 2008. "New prospects on vines," Documents de travail du Centre d'Economie de la Sorbonne b08095, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Mar 2010.
    10. Dominique Guegan & Bertrand Hassani, 2013. "Multivariate VaRs for operational risk capital computation: a vine structure approach," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00645778, HAL.
    11. Dominique Guegan & Bertrand Hassani, 2013. "Multivariate VaRs for operational risk capital computation: a vine structure approach," Post-Print halshs-00645778, HAL.
    12. Dominique Guegan & Bertrand Hassani, 2013. "Multivariate VaRs for operational risk capital computation: a vine structure approach," PSE-Ecole d'économie de Paris (Postprint) halshs-00645778, HAL.
    13. Low, Rand Kwong Yew & Alcock, Jamie & Faff, Robert & Brailsford, Timothy, 2013. "Canonical vine copulas in the context of modern portfolio management: Are they worth it?," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3085-3099.
    14. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    15. Christian Genest & Johanna Nešlehová & Jean-François Quessy, 2012. "Tests of symmetry for bivariate copulas," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 811-834, August.
    16. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    17. Dominique Guegan & Pierre-André Maugis, 2010. "New Prospects on Vines," Post-Print halshs-00348884, HAL.
    18. J. Rosco & Harry Joe, 2013. "Measures of tail asymmetry for bivariate copulas," Statistical Papers, Springer, vol. 54(3), pages 709-726, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuichi Goto & Tobias Kley & Ria Van Hecke & Stanislav Volgushev & Holger Dette & Marc Hallin, 2021. "The Integrated Copula Spectrum," Working Papers ECARES 2021-29, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
    2. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01467857, HAL.
    3. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Post-Print halshs-01467857, HAL.
    4. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    5. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2018.
    6. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    7. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    8. J. Rosco & Harry Joe, 2013. "Measures of tail asymmetry for bivariate copulas," Statistical Papers, Springer, vol. 54(3), pages 709-726, August.
    9. Miriam Jaser & Aleksey Min, 2021. "On tests for symmetry and radial symmetry of bivariate copulas towards testing for ellipticity," Computational Statistics, Springer, vol. 36(3), pages 1-26, September.
    10. Dominique Guegan & Bertrand K. Hassani, 2016. "Risk Measures At Risk- Are we missing the point? Discussions around sub-additivity and distortion," Post-Print halshs-01318093, HAL.
    11. Dominique Guegan & Bertrand K. Hassani, 2016. "Risk Measures At Risk- Are we missing the point? Discussions around sub-additivity and distortion," Documents de travail du Centre d'Economie de la Sorbonne 16039, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    12. Dominique Guegan & Bertrand K. Hassani, 2016. "Risk Measures At Risk- Are we missing the point? Discussions around sub-additivity and distortion," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01318093, HAL.
    13. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    14. Bertrand K. Hassani & Alexis Renaudin, 2018. "The Cascade Bayesian Approach: Prior Transformation for a Controlled Integration of Internal Data, External Data and Scenarios," Risks, MDPI, vol. 6(2), pages 1-17, April.
    15. Quessy, Jean-François, 2021. "A Szekely–Rizzo inequality for testing general copula homogeneity hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    16. Dominique Guegan & Bertrand Hassani, 2015. "Risk or Regulatory Capital? Bringing distributions back in the foreground," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01169268, HAL.
    17. Shogo Kato & Toshinao Yoshiba & Shinto Eguchi, 2022. "Copula-based measures of asymmetry between the lower and upper tail probabilities," Statistical Papers, Springer, vol. 63(6), pages 1907-1929, December.
    18. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    19. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    20. Beare, Brendan K. & Seo, Juwon, 2020. "Randomization Tests Of Copula Symmetry," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1025-1063, December.

    More about this item

    Keywords

    radial symmetry; vertex symmetry; diametrical symmetry; copula; vine copula; rank-based inference;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:iwqwdp:062017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/vierlde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.