IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v30y2015i1p191-203.html
   My bibliography  Save this article

Variable selection after screening: with or without data splitting?

Author

Listed:
  • Xiaoyi Zhu
  • Yuhong Yang

Abstract

High dimensional data sets are now frequently encountered in many scientific fields. In order to select a sparse set of predictors that have predictive power and/or provide insightful understanding on which predictors really influence the response, a preliminary variable screening is typically done often informally. Fan and Lv (J R Stat Soc Ser B 70:849–911, 2008 ) proposed sure independence screening (SIS) to reduce the dimension of the set of predictors from ultra-high to a moderate scale below the sample size. Then one may apply a familiar variable selection technique. While this approach has become popular, the screening bias issue has been mainly ignored. The screening bias may lead to the final selection of a number of predictors that have no/little value for prediction/explanation. In this paper we set to examine this screening bias both theoretically and numerically compare the approach with an alternative that utilizes data splitting. The simulation results and real bioinformatics examples show that data splitting can significantly reduce the screening bias for variable selection and improve the prediction accuracy as well. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Xiaoyi Zhu & Yuhong Yang, 2015. "Variable selection after screening: with or without data splitting?," Computational Statistics, Springer, vol. 30(1), pages 191-203, March.
  • Handle: RePEc:spr:compst:v:30:y:2015:i:1:p:191-203
    DOI: 10.1007/s00180-014-0528-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-014-0528-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-014-0528-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meinshausen, Nicolai & Meier, Lukas & Bühlmann, Peter, 2009. "p-Values for High-Dimensional Regression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1671-1681.
    2. Yuhong Yang, 2005. "Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation," Biometrika, Biometrika Trust, vol. 92(4), pages 937-950, December.
    3. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    4. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    5. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun-Xia Zhang & Jiang-She Zhang & Sang-Woon Kim, 2016. "PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection," Computational Statistics, Springer, vol. 31(4), pages 1237-1262, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    2. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    3. Chun-Xia Zhang & Jiang-She Zhang & Sang-Woon Kim, 2016. "PBoostGA: pseudo-boosting genetic algorithm for variable ranking and selection," Computational Statistics, Springer, vol. 31(4), pages 1237-1262, December.
    4. Xue Wu & Chixiang Chen & Zheng Li & Lijun Zhang & Vernon M. Chinchilli & Ming Wang, 2024. "A three-stage approach to identify biomarker signatures for cancer genetic data with survival endpoints," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 863-883, July.
    5. Gabriel E Hoffman & Benjamin A Logsdon & Jason G Mezey, 2013. "PUMA: A Unified Framework for Penalized Multiple Regression Analysis of GWAS Data," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-19, June.
    6. Feng Zou & Hengjian Cui, 2020. "Error density estimation in high-dimensional sparse linear model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 427-449, April.
    7. Shi, Chengchun & Song, Rui & Lu, Wenbin & Li, Runzi, 2020. "Statistical inference for high-dimensional models via recursive online-score estimation," LSE Research Online Documents on Economics 103043, London School of Economics and Political Science, LSE Library.
    8. Zhang, Yaowu & Zhou, Yeqing & Zhu, Liping, 2024. "A post-screening diagnostic study for ultrahigh dimensional data," Journal of Econometrics, Elsevier, vol. 239(2).
    9. Shi, Chengchun & Li, Lexin, 2022. "Testing mediation effects using logic of Boolean matrices," LSE Research Online Documents on Economics 108881, London School of Economics and Political Science, LSE Library.
    10. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    11. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    13. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    14. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    15. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    16. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    17. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    18. Laurent Ferrara & Anna Simoni, 2023. "When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1188-1202, October.
    19. Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
    20. Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, Department of Economics and Business Economics, Aarhus University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:30:y:2015:i:1:p:191-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.