IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v139y2018icp84-89.html
   My bibliography  Save this article

On the regularity of weak solutions to space–time fractional stochastic heat equations

Author

Listed:
  • Zou, Guang-an
  • Lv, Guangying
  • Wu, Jiang-Lun

Abstract

This study is concerned with the space–time fractional stochastic heat-type equations driven by multiplicative noise, which can be used to model the anomalous heat diffusion in porous media with random effects with thermal memory. We first deduce the weak solutions to the given problem by means of the Laplace transform and Mittag-Leffler function. Using the fractional calculus and stochastic analysis theory, we further prove the pathwise spatial–temporal regularity properties of weak solutions to this type of SPDEs in the framework of Bochner spaces.

Suggested Citation

  • Zou, Guang-an & Lv, Guangying & Wu, Jiang-Lun, 2018. "On the regularity of weak solutions to space–time fractional stochastic heat equations," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 84-89.
  • Handle: RePEc:eee:stapro:v:139:y:2018:i:c:p:84-89
    DOI: 10.1016/j.spl.2018.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218301469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mijena, Jebessa B. & Nane, Erkan, 2015. "Space–time fractional stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(9), pages 3301-3326.
    2. Chen, Zhen-Qing & Kim, Kyeong-Hun & Kim, Panki, 2015. "Fractional time stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1470-1499.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asogwa, Sunday A. & Nane, Erkan, 2017. "Intermittency fronts for space-time fractional stochastic partial differential equations in (d+1) dimensions," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1354-1374.
    2. Chen, Le & Hu, Yaozhong & Nualart, David, 2019. "Nonlinear stochastic time-fractional slow and fast diffusion equations on Rd," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5073-5112.
    3. McSylvester Ejighikeme Omaba & Hamdan Al Sulaimani, 2022. "On Caputo–Katugampola Fractional Stochastic Differential Equation," Mathematics, MDPI, vol. 10(12), pages 1-12, June.
    4. Omaba, McSylvester Ejighikeme, 2021. "Growth moment, stability and asymptotic behaviours of solution to a class of time-fractal-fractional stochastic differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Junmei Wang & James Hoult & Yubin Yan, 2021. "Spatial Discretization for Stochastic Semi-Linear Subdiffusion Equations Driven by Fractionally Integrated Multiplicative Space-Time White Noise," Mathematics, MDPI, vol. 9(16), pages 1-38, August.
    6. Beghin, Luisa, 2018. "Fractional diffusion-type equations with exponential and logarithmic differential operators," Stochastic Processes and their Applications, Elsevier, vol. 128(7), pages 2427-2447.
    7. Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. Kumar, Vivek, 2022. "Stochastic fractional heat equation perturbed by general Gaussian and non-Gaussian noise," Statistics & Probability Letters, Elsevier, vol. 184(C).
    9. Liu, Xinfei & Yang, Xiaoyuan, 2023. "Numerical approximation of the stochastic equation driven by the fractional noise," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    10. Tuan, Nguyen Huy & Caraballo, Tomás & Thach, Tran Ngoc, 2023. "New results for stochastic fractional pseudo-parabolic equations with delays driven by fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 24-67.
    11. Wael W. Mohammed & Farah M. Al-Askar & Clemente Cesarano & M. El-Morshedy, 2022. "The Optical Solutions of the Stochastic Fractional Kundu–Mukherjee–Naskar Model by Two Different Methods," Mathematics, MDPI, vol. 10(9), pages 1-10, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:139:y:2018:i:c:p:84-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.