Numerical approximation of the stochastic equation driven by the fractional noise
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2023.128053
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Zhen-Qing & Kim, Kyeong-Hun & Kim, Panki, 2015. "Fractional time stochastic partial differential equations," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1470-1499.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Asogwa, Sunday A. & Nane, Erkan, 2017. "Intermittency fronts for space-time fractional stochastic partial differential equations in (d+1) dimensions," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1354-1374.
- Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Junmei Wang & James Hoult & Yubin Yan, 2021. "Spatial Discretization for Stochastic Semi-Linear Subdiffusion Equations Driven by Fractionally Integrated Multiplicative Space-Time White Noise," Mathematics, MDPI, vol. 9(16), pages 1-38, August.
- Chen, Le & Hu, Yaozhong & Nualart, David, 2019. "Nonlinear stochastic time-fractional slow and fast diffusion equations on Rd," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5073-5112.
- Zou, Guang-an & Lv, Guangying & Wu, Jiang-Lun, 2018. "On the regularity of weak solutions to space–time fractional stochastic heat equations," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 84-89.
- Xiaolei Wu & Yubin Yan, 2024. "Error Analysis for Semilinear Stochastic Subdiffusion with Integrated Fractional Gaussian Noise," Mathematics, MDPI, vol. 12(22), pages 1-28, November.
- Kumar, Vivek, 2022. "Stochastic fractional heat equation perturbed by general Gaussian and non-Gaussian noise," Statistics & Probability Letters, Elsevier, vol. 184(C).
- Tuan, Nguyen Huy & Caraballo, Tomás & Thach, Tran Ngoc, 2023. "New results for stochastic fractional pseudo-parabolic equations with delays driven by fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 24-67.
More about this item
Keywords
Time-fractional nonlinear stochastic fourth-order reaction diffusion equation; Fractional noise; Mixed finite element method; Weak convergence; Strong convergence;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:452:y:2023:i:c:s0096300323002229. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.