IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v127y2017icp14-22.html
   My bibliography  Save this article

Estimating conditional means with heavy tails

Author

Listed:
  • Peng, Liang
  • Yao, Qiwei

Abstract

When a conditional distribution has an infinite variance, commonly employed kernel smoothing methods such as local polynomial estimators for the conditional mean admit non-normal limiting distributions (Hall et al., 2002). This complicates the related inference as the conventional tests and confidence intervals based on asymptotic normality are no longer applicable, and the standard bootstrap method often fails. By utilizing the middle part of data nonparametrically and the tail parts parametrically based on extreme value theory, this paper proposes a new estimation method for conditional means, resulting in asymptotically normal estimators even when the conditional distribution has infinite variance. Consequently the standard bootstrap method could be employed to construct, for example, confidence intervals regardless of the tail heaviness. The same idea can be applied to estimating the difference between a conditional mean and a conditional median, which is a useful measure in data exploratory analysis.

Suggested Citation

  • Peng, Liang & Yao, Qiwei, 2017. "Estimating conditional means with heavy tails," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 14-22.
  • Handle: RePEc:eee:stapro:v:127:y:2017:i:c:p:14-22
    DOI: 10.1016/j.spl.2017.03.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217301232
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.03.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Hall & Liang Peng & Qiwei Yao, 2002. "Prediction and nonparametric estimation for time series with heavy tails," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(3), pages 313-331, May.
    2. Peng, Liang, 2001. "Estimating the mean of a heavy tailed distribution," Statistics & Probability Letters, Elsevier, vol. 52(3), pages 255-264, April.
    3. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2014. "Local robust and asymptotically unbiased estimation of conditional Pareto-type tails," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 330-355, June.
    4. Necir, Abdelhakim & Meraghni, Djamel, 2009. "Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 49-58, August.
    5. Hall, Peter & Peng, Liang & Yao, Qiwei, 2002. "Prediction and nonparametric estimation for time series with heavy tails," LSE Research Online Documents on Economics 6086, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qiao, 2023. "A simple nonparametric conditional quantile estimator for time series with thin tails," Economics Letters, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Liang & Yao, Qiwei, 2017. "Estimating conditional means with heavy tails," LSE Research Online Documents on Economics 73082, London School of Economics and Political Science, LSE Library.
    2. Brahimi, Brahim & Meraghni, Djamel & Necir, Abdelhakim & Zitikis, Ričardas, 2011. "Estimating the distortion parameter of the proportional-hazard premium for heavy-tailed losses," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 325-334.
    3. Liu, Qing & Peng, Liang & Wang, Xing, 2017. "Haezendonck–Goovaerts risk measure with a heavy tailed loss," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 28-47.
    4. Toshio Honda, 2013. "Nonparametric quantile regression with heavy-tailed and strongly dependent errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 23-47, February.
    5. Honda, Toshio, 2013. "Nonparametric LAD cointegrating regression," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 150-162.
    6. Peng, Liang & Yao, Qiwei, 2004. "Nonparametric regression under dependent errors with infinite variance," LSE Research Online Documents on Economics 22874, London School of Economics and Political Science, LSE Library.
    7. Bonsoo Koo & Oliver Linton, 2013. "Let's get LADE: robust estimation of semiparametric multiplicative volatility models," CeMMAP working papers 11/13, Institute for Fiscal Studies.
    8. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2015. "Expected utility and catastrophic consumption risk," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 306-312.
    9. Ghosh, Yashowanto N. & Mukherjee, Bhramar, 2006. "On probabilistic properties of conditional medians and quantiles," Statistics & Probability Letters, Elsevier, vol. 76(16), pages 1775-1780, October.
    10. Toshio Honda, 2010. "Nonparametric estimation of conditional medians for linear and related processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(6), pages 995-1021, December.
    11. Masako Ikefuji & Roger Laeven & Jan Magnus & Chris Muris, 2014. "Expected Utility and Catastrophic Risk," Tinbergen Institute Discussion Papers 14-133/III, Tinbergen Institute.
    12. Goegebeur, Yuri & Guillou, Armelle & Ho, Nguyen Khanh Le & Qin, Jing, 2020. "Robust nonparametric estimation of the conditional tail dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    13. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    14. Goedele Dierckx & Yuri Goegebeur & Armelle Guillou, 2021. "Local Robust Estimation of Pareto-Type Tails with Random Right Censoring," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 70-108, February.
    15. Necir, Abdelhakim & Meraghni, Djamel, 2009. "Empirical estimation of the proportional hazard premium for heavy-tailed claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 49-58, August.
    16. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    17. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 52-86, February.
    18. Ainura Tursunalieva & Param Silvapulle, 2013. "Non-parametric Estimation of Operational Risk and Expected Shortfall," Monash Econometrics and Business Statistics Working Papers 23/13, Monash University, Department of Econometrics and Business Statistics.
    19. Ulrich K. Müller, 2020. "A More Robust t-Test," Working Papers 2020-32, Princeton University. Economics Department..
    20. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and bias-corrected estimation of the probability of extreme failure sets," Post-Print hal-01616187, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:127:y:2017:i:c:p:14-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.