IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v127y2017icp120-130.html
   My bibliography  Save this article

Imputation in nonparametric quantile regression with complex data

Author

Listed:
  • Hu, Yanan
  • Yang, Yaqi
  • Wang, Chunyu
  • Tian, Maozai

Abstract

This paper considers nonparametric quantile regression models for complex data of mixed categorical and continuous variables together with missing values at random (MAR). In consideration of the increasingly popular application of multiple imputation for handling missing data and the advantages of nonparametric quantile regression, we propose an effective and accurate multiple imputation method. The estimation procedure not only does well in modeling with mixed categorical and continuous data, but also makes full use of the entire data set to achieve increased efficiency. The proposed estimator is asymptotically normal. In simulation study, we compare the performance of the multiple imputation method with complete case (CC), Regression imputation and nearest-neighbor imputation methods, and outline advantages and drawbacks of the different methods. Simulation studies show that the proposed multiple imputation method performs better.

Suggested Citation

  • Hu, Yanan & Yang, Yaqi & Wang, Chunyu & Tian, Maozai, 2017. "Imputation in nonparametric quantile regression with complex data," Statistics & Probability Letters, Elsevier, vol. 127(C), pages 120-130.
  • Handle: RePEc:eee:stapro:v:127:y:2017:i:c:p:120-130
    DOI: 10.1016/j.spl.2017.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216302164
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    2. Ying Wei & Yanyuan Ma & Raymond J. Carroll, 2012. "Multiple imputation in quantile regression," Biometrika, Biometrika Trust, vol. 99(2), pages 423-438.
    3. Li, Qi & Racine, Jeffrey S, 2008. "Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 423-434.
    4. Xuerong Chen & Alan T. K. Wan & Yong Zhou, 2015. "Efficient Quantile Regression Analysis With Missing Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 723-741, June.
    5. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    6. Lawrence R. Landerman & Kenneth C. Land & Carl F. Pieper, 1997. "An Empirical Evaluation of the Predictive Mean Matching Method for Imputing Missing Values," Sociological Methods & Research, , vol. 26(1), pages 3-33, August.
    7. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.
    2. Shuanghua Luo & Changlin Mei & Cheng-yi Zhang, 2017. "Smoothed empirical likelihood for quantile regression models with response data missing at random," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 95-116, January.
    3. Bindele, Huybrechts F., 2018. "Covariates missing at random under signed-rank inference," Econometrics and Statistics, Elsevier, vol. 8(C), pages 78-93.
    4. Sherwood, Ben, 2016. "Variable selection for additive partial linear quantile regression with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 206-223.
    5. Cheng, Hao, 2021. "Importance sampling imputation algorithms in quantile regression with their application in CGSS data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 498-508.
    6. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    7. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    8. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    9. Cliff J. Huang & Tsu-Tan Fu & Hung-Pin Lai & Yung-Lieh Yang, 2017. "Semiparametric smooth coefficient quantile estimation of the production profile," Empirical Economics, Springer, vol. 52(1), pages 373-392, February.
    10. Anne M. Lausier & Shaleen Jain, 2018. "Diversity in global patterns of observed precipitation variability and change on river basin scales," Climatic Change, Springer, vol. 149(2), pages 261-275, July.
    11. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    12. Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
    13. Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
    14. Harding, Matthew & Lamarche, Carlos, 2019. "A panel quantile approach to attrition bias in Big Data: Evidence from a randomized experiment," Journal of Econometrics, Elsevier, vol. 211(1), pages 61-82.
    15. Szendrei, Tibor & Varga, Katalin, 2023. "Revisiting vulnerable growth in the Euro Area: Identifying the role of financial conditions in the distribution," Economics Letters, Elsevier, vol. 223(C).
    16. Racine, Jeffrey S. & Li, Kevin, 2017. "Nonparametric conditional quantile estimation: A locally weighted quantile kernel approach," Journal of Econometrics, Elsevier, vol. 201(1), pages 72-94.
    17. Lian, Heng & Meng, Jie & Fan, Zengyan, 2015. "Simultaneous estimation of linear conditional quantiles with penalized splines," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 1-21.
    18. Alexander Silbersdorff & Julia Lynch & Stephan Klasen & Thomas Kneib, 2017. "Reconsidering the Income-Illness Relationship using Distributional Regression: An Application to Germany," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 231, Courant Research Centre PEG.
    19. Yuzhi Cai & Guodong Li, 2018. "A novel approach to modelling the distribution of financial returns," Working Papers 2018-22, Swansea University, School of Management.
    20. Bonaccolto, G. & Caporin, M. & Gupta, R., 2018. "The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:127:y:2017:i:c:p:120-130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.