IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v211y2023icp263-277.html
   My bibliography  Save this article

On the convergence order of a binary tree approximation of symmetrized diffusion processes

Author

Listed:
  • Akahori, Jirô
  • Fan, Jie Yen
  • Imamura, Yuri

Abstract

The price of a barrier option is often computed numerically. Due to the path dependency, the convergence rate of such numerical approximation is generally of order 1/2. In this paper, we show that the convergence order can be achieved at 1 under certain condition. This confirms a numerical analysis done previously by the third author with others.

Suggested Citation

  • Akahori, Jirô & Fan, Jie Yen & Imamura, Yuri, 2023. "On the convergence order of a binary tree approximation of symmetrized diffusion processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 263-277.
  • Handle: RePEc:eee:matcom:v:211:y:2023:i:c:p:263-277
    DOI: 10.1016/j.matcom.2023.03.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423001350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.03.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gobet, Emmanuel, 2000. "Weak approximation of killed diffusion using Euler schemes," Stochastic Processes and their Applications, Elsevier, vol. 87(2), pages 167-197, June.
    2. Jirô Akahori & Yuri Imamura, 2014. "On a symmetrization of diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1211-1216, July.
    3. Alexander Gairat & Vadim Shcherbakov, 2017. "Density Of Skew Brownian Motion And Its Functionals With Application In Finance," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1069-1088, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuji Hishida & Yuta Ishigaki & Toshiki Okumura, 2019. "A Numerical Scheme for Expectations with First Hitting Time to Smooth Boundary," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(4), pages 553-565, December.
    2. Guangli Xu & Xingchun Wang, 2021. "On the Transition Density and First Hitting Time Distributions of the Doubly Skewed CIR Process," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 735-752, September.
    3. Lejay, Antoine & Maire, Sylvain, 2007. "Computing the principal eigenvalue of the Laplace operator by a stochastic method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(6), pages 351-363.
    4. Casella, Bruno & Roberts, Gareth O., 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," MPRA Paper 95217, University Library of Munich, Germany.
    5. Hoel Håkon & von Schwerin Erik & Szepessy Anders & Tempone Raúl, 2014. "Implementation and analysis of an adaptive multilevel Monte Carlo algorithm," Monte Carlo Methods and Applications, De Gruyter, vol. 20(1), pages 1-41, March.
    6. Diana Dorobantu & Yahia Salhi & Pierre-Emmanuel Thérond, 2018. "Modelling net carrying amount of shares for market consistent valuation of life insurance liabilities," Working Papers hal-01840057, HAL.
    7. Bruno Casella & Gareth O. Roberts, 2011. "Exact Simulation of Jump-Diffusion Processes with Monte Carlo Applications," Methodology and Computing in Applied Probability, Springer, vol. 13(3), pages 449-473, September.
    8. repec:hal:wpaper:hal-00400666 is not listed on IDEAS
    9. Li, Dan & Liu, Lixin & Xu, Guangli, 2023. "Psychological barriers and option pricing in a local volatility model," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    10. Madalina Deaconu & Samuel Herrmann, 2023. "Strong Approximation of Bessel Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-24, March.
    11. Che Guo & Xingchun Wang, 2022. "Pricing vulnerable options under correlated skew Brownian motions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(5), pages 852-867, May.
    12. Rey, Clément, 2019. "Approximation of Markov semigroups in total variation distance under an irregular setting: An application to the CIR process," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 539-571.
    13. Bayer Christian & Szepessy Anders & Tempone Raúl, 2010. "Adaptive weak approximation of reflected and stopped diffusions," Monte Carlo Methods and Applications, De Gruyter, vol. 16(1), pages 1-67, January.
    14. Diana Dorobantu & Yahia Salhi & Pierre-E. Thérond, 2020. "Modelling Net Carrying Amount of Shares for Market Consistent Valuation of Life Insurance Liabilities," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 711-745, June.
    15. Yuri Imamura & Yuta Ishigaki & Takuya Kawagoe & Toshiki Okumura, 2012. "A Numerical Scheme Based on Semi-Static Hedging Strategy," Papers 1206.2934, arXiv.org, revised Aug 2012.
    16. Umut Çetin & Julien Hok, 2024. "Speeding up the Euler scheme for killed diffusions," Finance and Stochastics, Springer, vol. 28(3), pages 663-707, July.
    17. Maire Sylvain & Tanré Etienne, 2013. "Monte Carlo approximations of the Neumann problem," Monte Carlo Methods and Applications, De Gruyter, vol. 19(3), pages 201-236, October.
    18. Matoussi Anis & Sabbagh Wissal, 2016. "Numerical computation for backward doubly SDEs with random terminal time," Monte Carlo Methods and Applications, De Gruyter, vol. 22(3), pages 229-258, September.
    19. Paolo Pigato, 2019. "Extreme at-the-money skew in a local volatility model," Finance and Stochastics, Springer, vol. 23(4), pages 827-859, October.
    20. Imamura Yuri & Ishigaki Yuta & Okumura Toshiki, 2014. "A numerical scheme based on semi-static hedging strategy," Monte Carlo Methods and Applications, De Gruyter, vol. 20(4), pages 223-235, December.
    21. R'uben Sousa & Ana Bela Cruzeiro & Manuel Guerra, 2016. "Barrier Option Pricing under the 2-Hypergeometric Stochastic Volatility Model," Papers 1610.03230, arXiv.org, revised Aug 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:211:y:2023:i:c:p:263-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.