IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1801.04045.html
   My bibliography  Save this paper

Asymptotic Static Hedge via Symmetrization

Author

Listed:
  • Jiro Akahori
  • Flavia Barsotti
  • Yuri Imamura

Abstract

This paper is a continuation of Akahori-Barsotti-Imamura (2017) and where the authors i) showed that a payment at a random time, which we call timing risk, is decomposed into an integral of static positions of knock-in type barrier options, ii) proposed an iteration of static hedge of a timing risk by regarding the hedging error by a static hedge strategy of Bowie-Carr type with respect to a barrier option as a timing risk, and iii) showed that the error converges to zero by infinitely many times of iteration under a condition on the integrability of a relevant function. Even though many diffusion models including generic 1-dimensional ones satisfy the required condition, a construction of the iterated static hedge that is applicable to any uniformly elliptic diffusions is postponed to the present paper because of its mathematical difficulty. We solve the problem in this paper by relying on the symmetrization, a technique first introduced in Imamura-Ishigaki-Okumura (2014) and generalized in Akahori-Imamura (2014), and also work on parametrix, a classical technique from perturbation theory to construct a fundamental solution of a partial differential equation. Due to a lack of continuity in the diffusion coefficient, however, a careful study of the integrability of the relevant functions is required. The long lines of proof itself could be a contribution to the parametrix analysis.

Suggested Citation

  • Jiro Akahori & Flavia Barsotti & Yuri Imamura, 2018. "Asymptotic Static Hedge via Symmetrization," Papers 1801.04045, arXiv.org.
  • Handle: RePEc:arx:papers:1801.04045
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1801.04045
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jirô Akahori & Yuri Imamura, 2014. "On a symmetrization of diffusion processes," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1211-1216, July.
    2. Yuri Imamura & Katsuya Takagi, 2013. "Semi-Static Hedging Based on a Generalized Reflection Principle on a Multi Dimensional Brownian Motion," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(1), pages 71-81, March.
    3. Erhan Bayraktar & Sergey Nadtochiy, 2013. "Weak reflection principle for L\'evy processes," Papers 1308.2250, arXiv.org, revised Oct 2015.
    4. Jiro Akahori & Flavia Barsotti & Yuri Imamura, 2017. "The Value of Timing Risk," Papers 1701.05695, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiro Akahori & Flavia Barsotti & Yuri Imamura, 2017. "The Value of Timing Risk," Papers 1701.05695, arXiv.org.
    2. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    3. Yuri Imamura & Yuta Ishigaki & Takuya Kawagoe & Toshiki Okumura, 2012. "A Numerical Scheme Based on Semi-Static Hedging Strategy," Papers 1206.2934, arXiv.org, revised Aug 2012.
    4. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    5. Akahori, Jirô & Fan, Jie Yen & Imamura, Yuri, 2023. "On the convergence order of a binary tree approximation of symmetrized diffusion processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 263-277.
    6. Ngo, Hoang-Long & Taguchi, Dai, 2017. "Strong convergence for the Euler–Maruyama approximation of stochastic differential equations with discontinuous coefficients," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 55-63.
    7. Ngo, Hoang-Long & Taguchi, Dai, 2019. "On the Euler–Maruyama scheme for SDEs with bounded variation and Hölder continuous coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 102-112.
    8. Yuji Hishida & Yuta Ishigaki & Toshiki Okumura, 2019. "A Numerical Scheme for Expectations with First Hitting Time to Smooth Boundary," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(4), pages 553-565, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1801.04045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.