IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v118y2016icp16-23.html
   My bibliography  Save this article

Iterated scaling limits for aggregation of random coefficient AR(1) and INAR(1) processes

Author

Listed:
  • Nedényi, Fanni
  • Pap, Gyula

Abstract

By temporal and contemporaneous aggregation, doubly indexed partial sums of independent copies of random coefficient AR(1) or INAR(1) processes are studied. Iterated limits of the appropriately centered and scaled aggregated partial sums are shown to exist. The paper completes the results of Pilipauskaitė and Surgailis (2014) and Barczy et al. (2015).

Suggested Citation

  • Nedényi, Fanni & Pap, Gyula, 2016. "Iterated scaling limits for aggregation of random coefficient AR(1) and INAR(1) processes," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 16-23.
  • Handle: RePEc:eee:stapro:v:118:y:2016:i:c:p:16-23
    DOI: 10.1016/j.spl.2016.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216300840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    2. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2014. "Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1011-1035.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Remigijus Leipus & Anne Philippe & Vytautė Pilipauskaitė & Donatas Surgailis, 2020. "Estimating Long Memory in Panel Random‐Coefficient AR(1) Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 520-535, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2015. "Joint aggregation of random-coefficient AR(1) processes with common innovations," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 73-82.
    2. John Barkoulas & Christopher Baum & Mustafa Caglayan, 1999. "Fractional monetary dynamics," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1393-1400.
    3. Jan Babecký & Fabrizio Coricelli & Roman Horváth, 2009. "Assessing Inflation Persistence: Micro Evidence on an Inflation Targeting Economy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(2), pages 102-127, June.
    4. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Michelacci, Claudio & Zaffaroni, Paolo, 2000. "(Fractional) beta convergence," Journal of Monetary Economics, Elsevier, vol. 45(1), pages 129-153, February.
    6. Gil-Alana, L.A., 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
    7. Dufrenot, Gilles & Guegan, Dominique & Peguin-Feissolle, Anne, 2005. "Modelling squared returns using a SETAR model with long-memory dynamics," Economics Letters, Elsevier, vol. 86(2), pages 237-243, February.
    8. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    9. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    10. Eric Hillebrand & Marcelo C. Medeiros, 2016. "Nonlinearity, Breaks, and Long-Range Dependence in Time-Series Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(1), pages 23-41, January.
    11. A. M. M. Shahiduzzaman Quoreshi & Reaz Uddin & Naushad Mamode Khan, 2019. "Quasi-Maximum Likelihood Estimation for Long Memory Stock Transaction Data—Under Conditional Heteroskedasticity Framework," JRFM, MDPI, vol. 12(2), pages 1-13, April.
    12. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2014. "Structural breaks and long memory in modeling and forecasting volatility of foreign exchange markets of oil exporters: The importance of scheduled and unscheduled news announcements," International Review of Economics & Finance, Elsevier, vol. 30(C), pages 101-119.
    13. Claudio, Morana & Giacomo, Sbrana, 2017. "Some Financial Implications of Global Warming: An Empirical Assessment," Working Papers 377, University of Milano-Bicocca, Department of Economics, revised 25 Dec 2017.
    14. Jean-Philippe Gervais, 2011. "Disentangling nonlinearities in the long- and short-run price relationships: an application to the US hog/pork supply chain," Applied Economics, Taylor & Francis Journals, vol. 43(12), pages 1497-1510.
    15. Maria Kalli & Jim Griffin, 2015. "Flexible Modeling of Dependence in Volatility Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 102-113, January.
    16. Juan J. Dolado & Jesús Gonzalo & Laura Mayoral, 2005. "What is What? A Simple Time-Domain Test of Long-memory vs. Structural Breaks," Working Papers 258, Barcelona School of Economics.
    17. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    18. Linden, Mikael, 1999. "Time series properties of aggregated AR(1) processes with uniformly distributed coefficients," Economics Letters, Elsevier, vol. 64(1), pages 31-36, July.
    19. Miller, J. Isaac & Park, Joon Y., 2005. "How They Interact to Generate Persistency in Memory," Working Papers 2005-01, Rice University, Department of Economics.
    20. Jonathan B. Hill, 2007. "Efficient tests of long-run causation in trivariate VAR processes with a rolling window study of the money-income relationship," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 747-765.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:118:y:2016:i:c:p:16-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.