IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v20y2017i05ns0219024917500327.html
   My bibliography  Save this article

Theoretical Sensitivity Analysis For Quantitative Operational Risk Management

Author

Listed:
  • TAKASHI KATO

    (Association of Mathematical Finance Laboratory, 2-10, Kojimachi, Chiyoda, Tokyo 102-0083, Japan)

Abstract

We study the asymptotic behavior of the difference between the values at risk (VaR) VaRα(L) and VaRα(L + S) for heavy-tailed random variables L and S with α ↑ 1 for application in sensitivity analysis of quantitative operational risk management within the framework of the advanced measurement approach of Basel II (and III). Here, L describes the loss amount of the present risk profile and S describes the loss amount caused by an additional loss factor. We obtain different types of results according to the relative magnitudes of the thicknesses of the tails of L and S. In particular, if the tail of S is sufficiently thinner than that of L, then the difference between prior and posterior risk amounts VaRα(L + S) −VaRα(L) is asymptotically equivalent to the expectation (expected loss) of S.

Suggested Citation

  • Takashi Kato, 2017. "Theoretical Sensitivity Analysis For Quantitative Operational Risk Management," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(05), pages 1-23, August.
  • Handle: RePEc:wsi:ijtafx:v:20:y:2017:i:05:n:s0219024917500327
    DOI: 10.1142/S0219024917500327
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024917500327
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024917500327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winfried G. Hallerbach, 1999. "Decomposing Portfolio Value-at-Risk: A General Analysis," Tinbergen Institute Discussion Papers 99-034/2, Tinbergen Institute.
    2. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    3. Degen, Matthias & Lambrigger, Dominik D. & Segers, Johan, 2010. "Risk concentration and diversification: Second-order properties," LIDAM Reprints ISBA 2010011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    5. Degen, Matthias & Lambrigger, Dominik D. & Segers, Johan, 2010. "Risk concentration and diversification: Second-order properties," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 541-546, June.
    6. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    7. Robert C. Merton & André Perold, 1993. "Theory Of Risk Capital In Financial Firms," Journal of Applied Corporate Finance, Morgan Stanley, vol. 6(3), pages 16-32, September.
    8. Dirk Tasche, 2007. "Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle," Papers 0708.2542, arXiv.org, revised Jun 2008.
    9. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    10. Pavel V. Shevchenko, 2010. "Calculation of aggregate loss distributions," Papers 1008.1108, arXiv.org.
    11. Barbe, Philippe & Fougères, Anne-Laure & Genest, Christian, 2006. "On the Tail Behavior of Sums of Dependent Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 361-373, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takashi Kato, 2017. "Asymptotic Analysis for Spectral Risk Measures Parameterized by Confidence Level," Papers 1711.07335, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gilles Boevi Koumou & Georges Dionne, 2022. "Coherent Diversification Measures in Portfolio Theory: An Axiomatic Foundation," Risks, MDPI, vol. 10(11), pages 1-19, October.
    2. Takaaki Koike & Mihoko Minami, 2017. "Estimation of Risk Contributions with MCMC," Papers 1702.03098, arXiv.org, revised Jan 2019.
    3. Kley, Oliver & Klüppelberg, Claudia & Paterlini, Sandra, 2020. "Modelling extremal dependence for operational risk by a bipartite graph," Journal of Banking & Finance, Elsevier, vol. 117(C).
    4. Kang, Woo-Young & Poshakwale, Sunil, 2019. "A new approach to optimal capital allocation for RORAC maximization in banks," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 153-165.
    5. Das, Bikramjit & Kratz, Marie, 2017. "Diversification benefits under multivariate second order regular variation," ESSEC Working Papers WP1706, ESSEC Research Center, ESSEC Business School.
    6. Suzanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What Is the Best Risk Measure in Practice? A Comparison of Standard Measures," Working Papers hal-00921283, HAL.
    7. repec:hal:journl:hal-00921283 is not listed on IDEAS
    8. Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
    9. Bikramjit Das & Marie Kratz, 2017. "Diversification benefits under multivariate second order regular variation," Working Papers hal-01520655, HAL.
    10. Baule, Rainer, 2014. "Allocation of risk capital on an internal market," European Journal of Operational Research, Elsevier, vol. 234(1), pages 186-196.
    11. Buch, Arne & Dorfleitner, Gregor & Wimmer, Maximilian, 2011. "Risk capital allocation for RORAC optimization," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 3001-3009, November.
    12. Björn Häckel, 2010. "Risikoadjustierte Wertbeiträge zur ex ante Entscheidungsunterstützung: Ein axiomatischer Ansatz," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 21(1), pages 81-108, June.
    13. George Zanjani, 2010. "An Economic Approach to Capital Allocation," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 523-549, September.
    14. Navya Jayesh Mehta & Fan Yang, 2022. "Portfolio Optimization for Extreme Risks with Maximum Diversification: An Empirical Analysis," Risks, MDPI, vol. 10(5), pages 1-26, May.
    15. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    16. Eckert, Christian & Gatzert, Nadine, 2017. "Modeling operational risk incorporating reputation risk: An integrated analysis for financial firms," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 122-137.
    17. Henryk Zähle, 2022. "A concept of copula robustness and its applications in quantitative risk management," Finance and Stochastics, Springer, vol. 26(4), pages 825-875, October.
    18. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    19. Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.
    20. Jaume Belles‐Sampera & Montserrat Guillén & Miguel Santolino, 2014. "Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 121-134, January.
    21. Genest, Christian & Gerber, Hans U. & Goovaerts, Marc J. & Laeven, Roger J.A., 2009. "Editorial to the special issue on modeling and measurement of multivariate risk in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 143-145, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:20:y:2017:i:05:n:s0219024917500327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.