IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v102y2015icp8-16.html
   My bibliography  Save this article

Robustly exponential stabilization of hybrid uncertain systems by feedback controls based on discrete-time observations

Author

Listed:
  • You, Surong
  • Hu, Liangjian
  • Mao, Wei
  • Mao, Xuerong

Abstract

This paper deals with the problem of stabilizing a hybrid stochastic system with norm bounded uncertainties. State-feedback controls based on discrete-time observations are designed in the drift and diffusion parts of the system. The controlled system will be robustly exponentially stable in mean-square. Applying linear matrix inequality techniques, criteria to determine controllers and time lags are developed. One numerical example is given to verify our techniques.

Suggested Citation

  • You, Surong & Hu, Liangjian & Mao, Wei & Mao, Xuerong, 2015. "Robustly exponential stabilization of hybrid uncertain systems by feedback controls based on discrete-time observations," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 8-16.
  • Handle: RePEc:eee:stapro:v:102:y:2015:i:c:p:8-16
    DOI: 10.1016/j.spl.2015.03.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715215000954
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2015.03.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Udom, Akaninyene Udo, 2012. "Exponential stabilization of stochastic interval system with time dependent parameters," European Journal of Operational Research, Elsevier, vol. 222(3), pages 523-528.
    2. He, Yong & Wang, Qing-Guo & Zheng, Wei-Xing, 2005. "Global robust stability for delayed neural networks with polytopic type uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1349-1354.
    3. Mao, Xuerong, 1999. "Stability of stochastic differential equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 79(1), pages 45-67, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jin & Guo, Ying & Liu, Xiaotong & Zhang, Yifan, 2024. "Stabilization of highly nonlinear stochastic coupled systems with Markovian switching under discrete-time state observations control," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Li, Yuyuan & Lu, Jianqiu & Kou, Chunhai & Mao, Xuerong & Pan, Jiafeng, 2018. "Robust discrete-state-feedback stabilization of hybrid stochastic systems with time-varying delay based on Razumikhin technique," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 152-161.
    3. Song, Minghui & Geng, Yidan & Liu, Mingzhu, 2021. "Stability equivalence among stochastic differential equations and stochastic differential equations with piecewise continuous arguments and corresponding Euler-Maruyama methods," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    4. Zhang, Tian & Chen, Huabin, 2019. "The stability with a general decay of stochastic delay differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 294-307.
    5. Fan, Lina & Lv, Yuan & Zhu, Quanxin, 2023. "Stability analysis of discrete-time switched stochastic non-autonomous systems with external inputs and time-varying delays under partially unstable subsystems," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    6. Wu, Yongbao & Guo, Haihua & Li, Wenxue, 2020. "Finite-time stabilization of stochastic coupled systems on networks with Markovian switching via feedback control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    8. Luo, Tianjiao, 2019. "Stabilization of multi-group models with multiple dispersal and stochastic perturbation via feedback control based on discrete-time state observations," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 396-410.
    9. Mukama, Denis Sospeter & Ghani, Mohammad & Mbalawata, Isambi Sailon, 2023. "Persistence, Extinction, and boundedness in pth moment of hybrid stochastic logistic systems by delay feedback control based on discrete-time observation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 661-677.
    10. Feng, Lichao & Liu, Qiumei & Cao, Jinde & Zhang, Chunyan & Alsaadi, Fawaz, 2022. "Stabilization in general decay rate of discrete feedback control for non-autonomous Markov jump stochastic systems," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    11. Yu, Peilin & Deng, Feiqi, 2022. "Stabilization analysis of Markovian asynchronous switched systems with input delay and Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 422(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. K. Boukas, 2004. "Nonfragile Controller Design for Linear Markovian Jumping Parameters Systems," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 241-255, August.
    2. Li, Yuyuan & Lu, Jianqiu & Kou, Chunhai & Mao, Xuerong & Pan, Jiafeng, 2018. "Robust discrete-state-feedback stabilization of hybrid stochastic systems with time-varying delay based on Razumikhin technique," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 152-161.
    3. Song, Gongfei & Zhang, Zimeng & Zhu, Yanan & Li, Tao, 2022. "Discrete-time control for highly nonlinear neutral stochastic delay systems," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    4. Mao, Xuerong & Shen, Yi & Yuan, Chenggui, 2008. "Almost surely asymptotic stability of neutral stochastic differential delay equations with Markovian switching," Stochastic Processes and their Applications, Elsevier, vol. 118(8), pages 1385-1406, August.
    5. Rathinasamy, Anandaraman & Nair, Priya, 2018. "Asymptotic mean-square stability of weak second-order balanced stochastic Runge–Kutta methods for multi-dimensional Itô stochastic differential systems," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 276-303.
    6. Xi, Fubao, 2004. "Stability of a random diffusion with nonlinear drift," Statistics & Probability Letters, Elsevier, vol. 68(3), pages 273-286, July.
    7. Li, Bing, 2017. "A note on stability of hybrid stochastic differential equations," Applied Mathematics and Computation, Elsevier, vol. 299(C), pages 45-57.
    8. Guo, Beibei & Xiao, Yu, 2024. "Synchronization of multi-link and multi-delayed inertial neural networks with Markov jump via aperiodically intermittent adaptive control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 219(C), pages 435-453.
    9. Singh, Vimal, 2007. "Some remarks on global asymptotic stability of neural networks with constant time delay," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1720-1724.
    10. Liang, Tiantian & Shi, Shengli & Ma, Yuechao, 2023. "Asynchronous sliding mode control of continuous-time singular markov jump systems with time-varying delay under event-triggered strategy," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    11. Ruan, Dehao & Xu, Liping & Luo, Jiaowan, 2019. "Stability of hybrid stochastic functional differential equations," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 832-841.
    12. Zhou, Jianping & Sang, Chengyan & Li, Xiao & Fang, Muyun & Wang, Zhen, 2018. "H∞ consensus for nonlinear stochastic multi-agent systems with time delay," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 41-58.
    13. Yuan, Chenggui & Mao, Xuerong, 2004. "Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(2), pages 223-235.
    14. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    15. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    16. Zhou, Qi & Yao, Deyin & Wang, Jiahui & Wu, Chengwei, 2016. "Robust control of uncertain semi-Markovian jump systems using sliding mode control method," Applied Mathematics and Computation, Elsevier, vol. 286(C), pages 72-87.
    17. Li, Chuandong & Chen, Jinyu & Huang, Tingwen, 2007. "A new criterion for global robust stability of interval neural networks with discrete time delays," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 561-570.
    18. Lu, Junwei & Guo, Yiqian & Xu, Shengyuan, 2006. "Global asymptotic stability analysis for cellular neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 349-353.
    19. Singh, Vimal, 2007. "Simplified approach to the exponential stability of delayed neural networks with time varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 609-616.
    20. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:102:y:2015:i:c:p:8-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.