IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i3p1829-1837.html
   My bibliography  Save this article

Stability analysis of delayed Cohen–Grossberg BAM neural networks with impulses via nonsmooth analysis

Author

Listed:
  • Wen, Zhen
  • Sun, Jitao

Abstract

In this paper, we investigate the existence and uniqueness of equilibrium point for delayed Cohen–Grossberg bidirectional associative memory (BAM) neural networks with impulses, based on nonsmooth analysis method. And we give the criteria of global exponential stability of the unique equilibrium point for the delayed BAM neural networks with impulses using Lyapunov method. The new sufficient condition generalizes and improves the previously known results. Finally, we present examples to illustrate that our results are effective.

Suggested Citation

  • Wen, Zhen & Sun, Jitao, 2009. "Stability analysis of delayed Cohen–Grossberg BAM neural networks with impulses via nonsmooth analysis," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1829-1837.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1829-1837
    DOI: 10.1016/j.chaos.2009.03.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909002100
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Chuanzhi, 2008. "Stability analysis of Cohen–Grossberg BAM neural networks with delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 263-267.
    2. Wu, Wei & Cui, Bao Tong & Huang, Min, 2007. "Global asymptotic stability of Cohen–Grossberg neural networks with constant and variable delays," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1355-1361.
    3. He, Yong & Wang, Qing-Guo & Zheng, Wei-Xing, 2005. "Global robust stability for delayed neural networks with polytopic type uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1349-1354.
    4. Li, Chuandong & Liao, Xiaofeng & Zhang, Rong & Prasad, Ashutosh, 2005. "Global robust exponential stability analysis for interval neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 751-757.
    5. Huang, Zhenkun & Xia, Yonghui, 2008. "Global exponential stability of BAM neural networks with transmission delays and nonlinear impulses," Chaos, Solitons & Fractals, Elsevier, vol. 38(2), pages 489-498.
    6. Liu, Jiang, 2005. "Global exponential stability of Cohen–Grossberg neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 935-945.
    7. Xia, Yonghui & Huang, Zhenkun & Han, Maoan, 2008. "Existence and globally exponential stability of equilibrium for BAM neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 588-597.
    8. Li, Yongkun, 2005. "Global exponential stability of BAM neural networks with delays and impulses," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 279-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Kelin & Zeng, Huanglin, 2010. "Stability in impulsive Cohen–Grossberg-type BAM neural networks with time-varying delays: A general analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2329-2349.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Kelin & Zeng, Huanglin, 2010. "Stability in impulsive Cohen–Grossberg-type BAM neural networks with time-varying delays: A general analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2329-2349.
    2. Huang, Tingwen & Li, Chuandong & Chen, Goong, 2007. "Stability of Cohen–Grossberg neural networks with unbounded distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 992-996.
    3. Ping, Zhao Wu & Lu, Jun Guo, 2009. "Global exponential stability of impulsive Cohen–Grossberg neural networks with continuously distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 164-174.
    4. Li, Chun-Hsien & Yang, Suh-Yuh, 2009. "Existence and attractivity of periodic solutions to non-autonomous Cohen–Grossberg neural networks with time delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1235-1244.
    5. Sun, Yeong-Jeu & Gau, Ruey-Shyan & Hsieh, Jer-Guang, 2009. "Simple criteria for sector root clustering of uncertain systems with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 65-71.
    6. Mohamad, Sannay, 2008. "Computer simulations of exponentially convergent networks with large impulses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(4), pages 331-344.
    7. Huang, Zai-Tang & Luo, Xiao-Shu & Yang, Qi-Gui, 2007. "Global asymptotic stability analysis of bidirectional associative memory neural networks with distributed delays and impulse," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 878-885.
    8. Park, Ju H. & Lee, S.M. & Kwon, O.M., 2009. "On exponential stability of bidirectional associative memory neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1083-1091.
    9. Singh, Vimal, 2007. "Global asymptotic stability of neural networks with delay: Comparative evaluation of two criteria," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1187-1190.
    10. Gau, R.S. & Lien, C.H. & Hsieh, J.G., 2007. "Global exponential stability for uncertain cellular neural networks with multiple time-varying delays via LMI approach," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1258-1267.
    11. Lien, Chang-Hua & Chung, Long-Yeu, 2007. "Global asymptotic stability for cellular neural networks with discrete and distributed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1213-1219.
    12. Sun, Jitao & Wang, Qing-Guo & Gao, Hanqiao, 2009. "Periodic solution for nonautonomous cellular neural networks with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1423-1427.
    13. Huang, Zhenkun & Xia, Yonghui, 2009. "Exponential periodic attractor of impulsive BAM networks with finite distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 373-384.
    14. Yang, Yu & Ye, Jin, 2009. "Stability and bifurcation in a simplified five-neuron BAM neural network with delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2357-2363.
    15. Sheng, Li & Yang, Huizhong, 2009. "Novel global robust exponential stability criterion for uncertain BAM neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2102-2113.
    16. Lou, Xu Yang & Cui, Bao Tong, 2008. "Global robust dissipativity for integro-differential systems modeling neural networks with delays," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 469-478.
    17. Chen, Zhang, 2009. "Dynamic analysis of reaction–diffusion Cohen–Grossberg neural networks with varying delay and Robin boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1724-1730.
    18. Li, Yongkun & Xing, Zhiwei, 2007. "Existence and global exponential stability of periodic solution of CNNs with impulses," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1686-1693.
    19. Wang, Jiafu & Huang, Lihong, 2012. "Almost periodicity for a class of delayed Cohen–Grossberg neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1157-1170.
    20. Shih, Chih-Wen & Tseng, Jui-Pin, 2009. "Global consensus for discrete-time competitive systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 302-310.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:3:p:1829-1837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.