IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v95y2001i2p311-328.html
   My bibliography  Save this article

Strassen's law of the iterated logarithm for negatively associated random vectors

Author

Listed:
  • Zhang, Li-Xin

Abstract

The aim of this paper is to establish Strassen's law of the iterated logarithm for negatively associated random vectors under the finite second moment.

Suggested Citation

  • Zhang, Li-Xin, 2001. "Strassen's law of the iterated logarithm for negatively associated random vectors," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 311-328, October.
  • Handle: RePEc:eee:spapps:v:95:y:2001:i:2:p:311-328
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00107-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burton, Robert M. & Dabrowski, AndréRobert & Dehling, Herold, 1986. "An invariance principle for weakly associated random vectors," Stochastic Processes and their Applications, Elsevier, vol. 23(2), pages 301-306, December.
    2. Dabrowski, AndréR. & Dehling, Herold, 1988. "A Berry-Esséen theorem and a functional law of the iterated logarithm for weakly associated random vectors," Stochastic Processes and their Applications, Elsevier, vol. 30(2), pages 277-289, December.
    3. Shao, Qi-Man & Su, Chun, 1999. "The law of the iterated logarithm for negatively associated random variables," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 139-148, September.
    4. Matula, Przemyslaw, 1992. "A note on the almost sure convergence of sums of negatively dependent random variables," Statistics & Probability Letters, Elsevier, vol. 15(3), pages 209-213, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Wei, 2003. "A law of the iterated logarithm for geometrically weighted series of negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 63(2), pages 133-143, June.
    2. Hien, N.T.T. & Thanh, L.V., 2015. "On the weak laws of large numbers for sums of negatively associated random vectors in Hilbert spaces," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 236-245.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Tae-Sung & Ko, Mi-Hwa & Han, Kwang-Hee, 2008. "On the almost sure convergence for a linear process generated by negatively associated random variables in a Hilbert space," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2110-2115, October.
    2. Liang, Han-Ying & Fan, Guo-Liang, 2009. "Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 1-15, January.
    3. Huang, Wen-Tao & Xu, Bing, 2002. "Some maximal inequalities and complete convergences of negatively associated random sequences," Statistics & Probability Letters, Elsevier, vol. 57(2), pages 183-191, April.
    4. Vu T. N. Anh & Nguyen T. T. Hien & Le V. Thanh & Vo T. H. Van, 2021. "The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences," Journal of Theoretical Probability, Springer, vol. 34(1), pages 331-348, March.
    5. Bing-Yi Jing & Han-Ying Liang, 2008. "Strong Limit Theorems for Weighted Sums of Negatively Associated Random Variables," Journal of Theoretical Probability, Springer, vol. 21(4), pages 890-909, December.
    6. Mi-Hwa Ko & Tae-Sung Kim & Kwang-Hee Han, 2009. "A Note on the Almost Sure Convergence for Dependent Random Variables in a Hilbert Space," Journal of Theoretical Probability, Springer, vol. 22(2), pages 506-513, June.
    7. Zhang, Li-Xin & Wen, Jiwei, 2001. "A weak convergence for negatively associated fields," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 259-267, June.
    8. Wang, Jiang-Feng & Liang, Han-Ying, 2008. "A note on the almost sure central limit theorem for negatively associated fields," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1964-1970, September.
    9. Huang, Wei, 2003. "A law of the iterated logarithm for geometrically weighted series of negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 63(2), pages 133-143, June.
    10. Shao, Qi-Man & Su, Chun, 1999. "The law of the iterated logarithm for negatively associated random variables," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 139-148, September.
    11. Qi-Man Shao, 2000. "A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables," Journal of Theoretical Probability, Springer, vol. 13(2), pages 343-356, April.
    12. Khoshnevisan, Davar & Lewis, Thomas M., 1998. "A law of the iterated logarithm for stable processes in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 74(1), pages 89-121, May.
    13. Ming Yuan & Chun Su & Taizhong Hu, 2003. "A Central Limit Theorem for Random Fields of Negatively Associated Processes," Journal of Theoretical Probability, Springer, vol. 16(2), pages 309-323, April.
    14. Liu, Jingjun & Gan, Shixin & Chen, Pingyan, 1999. "The Hájeck-Rényi inequality for the NA random variables and its application," Statistics & Probability Letters, Elsevier, vol. 43(1), pages 99-105, May.
    15. Cai, Zongwu & Roussas, George G., 1998. "Kaplan-Meier Estimator under Association," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 318-348, November.
    16. Dagmara Dudek & Anna Kuczmaszewska, 2024. "Some practical and theoretical issues related to the quantile estimators," Statistical Papers, Springer, vol. 65(6), pages 3917-3933, August.
    17. Shi, Xiaoping & Wu, Yuehua & Miao, Baiqi, 2009. "Strong convergence rate of estimators of change point and its application," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 990-998, February.
    18. Yanchun Wu & Dawang Wang, 2010. "Almost Sure Convergence of Pair-wise NQD Random Sequence," Modern Applied Science, Canadian Center of Science and Education, vol. 4(12), pages 193-193, December.
    19. Liang, Han-Ying & Jing, Bing-Yi, 2005. "Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 227-245, August.
    20. Arenal-Gutiérrez, Eusebio & Matrán, Carlos & Cuesta-Albertos, Juan A., 1996. "On the unconditional strong law of large numbers for the bootstrap mean," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 49-60, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:95:y:2001:i:2:p:311-328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.