IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v23y1986i2p301-306.html
   My bibliography  Save this article

An invariance principle for weakly associated random vectors

Author

Listed:
  • Burton, Robert M.
  • Dabrowski, AndréRobert
  • Dehling, Herold

Abstract

The positive dependence notion of association for collections of random variables is generalized to that of weak association for collections of vector valued random elements in such a way as to allow negative dependencies in individual random elements. An invariance principle is stated and proven for a stationary, weakly associated sequence of d-valued or separable Hilbert space valued random elements which satisfy a covariance summability condition.

Suggested Citation

  • Burton, Robert M. & Dabrowski, AndréRobert & Dehling, Herold, 1986. "An invariance principle for weakly associated random vectors," Stochastic Processes and their Applications, Elsevier, vol. 23(2), pages 301-306, December.
  • Handle: RePEc:eee:spapps:v:23:y:1986:i:2:p:301-306
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(86)90043-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jia, 2008. "Asymptotics of kernel density estimators on weakly associated random fields," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3230-3237, December.
    2. Cai, Zongwu & Roussas, George G., 1998. "Kaplan-Meier Estimator under Association," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 318-348, November.
    3. Khoshnevisan, Davar & Lewis, Thomas M., 1998. "A law of the iterated logarithm for stable processes in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 74(1), pages 89-121, May.
    4. Xin Guo & Zhao Ruan & Lingjiong Zhu, 2015. "Dynamics of Order Positions and Related Queues in a Limit Order Book," Papers 1505.04810, arXiv.org, revised Oct 2015.
    5. Mi-Hwa Ko & Tae-Sung Kim & Kwang-Hee Han, 2009. "A Note on the Almost Sure Convergence for Dependent Random Variables in a Hilbert Space," Journal of Theoretical Probability, Springer, vol. 22(2), pages 506-513, June.
    6. R.M. Balan, 2003. "A Strong Invariance Principle for Associated Random Fields," RePAd Working Paper Series lrsp-TRS390, Département des sciences administratives, UQO.
    7. Huang, Wen-Tao & Xu, Bing, 2002. "Some maximal inequalities and complete convergences of negatively associated random sequences," Statistics & Probability Letters, Elsevier, vol. 57(2), pages 183-191, April.
    8. Zhang, Li-Xin, 2001. "Strassen's law of the iterated logarithm for negatively associated random vectors," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 311-328, October.
    9. Antoine Lerbet, 2023. "Statistical inference on stationary shot noise random fields," Statistical Inference for Stochastic Processes, Springer, vol. 26(3), pages 551-580, October.
    10. Vu T. N. Anh & Nguyen T. T. Hien & Le V. Thanh & Vo T. H. Van, 2021. "The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences," Journal of Theoretical Probability, Springer, vol. 34(1), pages 331-348, March.
    11. Thuan, Nguyen Tran & Quang, Nguyen Van, 2016. "Negative association and negative dependence for random upper semicontinuous functions, with applications," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 44-57.
    12. Kim, Tae-Sung & Ko, Mi-Hwa & Han, Kwang-Hee, 2008. "On the almost sure convergence for a linear process generated by negatively associated random variables in a Hilbert space," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2110-2115, October.
    13. Kim, Tae-Sung & Ko, Mi-Hwa, 2008. "A central limit theorem for the linear process generated by associated random variables in a Hilbert space," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2102-2109, October.

    More about this item

    Keywords

    invariance principle association;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:23:y:1986:i:2:p:301-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.