The Hájeck-Rényi inequality for the NA random variables and its application
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Matula, Przemyslaw, 1992. "A note on the almost sure convergence of sums of negatively dependent random variables," Statistics & Probability Letters, Elsevier, vol. 15(3), pages 209-213, October.
- Shixin, Gan, 1997. "The Hájek-Rényi inequality for Banach space valued martingales and the p smoothness of Banach spaces," Statistics & Probability Letters, Elsevier, vol. 32(3), pages 245-248, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yu Miao & Fangfang Zhao & Ke Wang & Yanping Chen, 2013. "Asymptotic normality and strong consistency of LS estimators in the EV regression model with NA errors," Statistical Papers, Springer, vol. 54(1), pages 193-206, February.
- Chen, Pingyan & Gan, Shixin, 2008. "On moments of the maximum of normed partial sums of [rho] -mixing random variables," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1215-1221, August.
- Shuhe, Hu & Ming, Hu, 2006. "A general approach rate to the strong law of large numbers," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 843-851, April.
- Boukhari, Fakhreddine, 2020. "The Marcinkiewics–Zygmund strong law of large numbers for dependent random variables," Statistics & Probability Letters, Elsevier, vol. 161(C).
- Sung, Soo Hak, 2008. "A note on the Hájek-Rényi inequality for associated random variables," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 885-889, May.
- Li, Yun-Xia & Wang, Jian-Feng, 2008. "An almost sure central limit theorem for products of sums under association," Statistics & Probability Letters, Elsevier, vol. 78(4), pages 367-375, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Jiang-Feng & Liang, Han-Ying, 2008. "A note on the almost sure central limit theorem for negatively associated fields," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1964-1970, September.
- Qin, Yongsong & Li, Yinghua, 2011. "Empirical likelihood for linear models under negatively associated errors," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 153-163, January.
- Boukhari, Fakhreddine, 2020. "The Marcinkiewics–Zygmund strong law of large numbers for dependent random variables," Statistics & Probability Letters, Elsevier, vol. 161(C).
- Kim, Tae-Sung & Ko, Mi-Hwa & Han, Kwang-Hee, 2008. "On the almost sure convergence for a linear process generated by negatively associated random variables in a Hilbert space," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2110-2115, October.
- Prakasa Rao, B. L. S., 2002. "Application of Whittle's inequality for banach space valued martingales," Statistics & Probability Letters, Elsevier, vol. 57(2), pages 133-137, April.
- Liang, Han-Ying & Fan, Guo-Liang, 2009. "Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 1-15, January.
- Shi, Xiaoping & Wu, Yuehua & Miao, Baiqi, 2009. "Strong convergence rate of estimators of change point and its application," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 990-998, February.
- Huang, Wei, 2003. "A law of the iterated logarithm for geometrically weighted series of negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 63(2), pages 133-143, June.
- Shao, Qi-Man & Su, Chun, 1999. "The law of the iterated logarithm for negatively associated random variables," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 139-148, September.
- Yanchun Wu & Dawang Wang, 2010. "Almost Sure Convergence of Pair-wise NQD Random Sequence," Modern Applied Science, Canadian Center of Science and Education, vol. 4(12), pages 193-193, December.
- Qi-Man Shao, 2000. "A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables," Journal of Theoretical Probability, Springer, vol. 13(2), pages 343-356, April.
- Hamza Daoudi & Zouaoui Chikr Elmezouar & Fatimah Alshahrani, 2023. "Asymptotic Results of Some Conditional Nonparametric Functional Parameters in High-Dimensional Associated Data," Mathematics, MDPI, vol. 11(20), pages 1-24, October.
- Huang, Wen-Tao & Xu, Bing, 2002. "Some maximal inequalities and complete convergences of negatively associated random sequences," Statistics & Probability Letters, Elsevier, vol. 57(2), pages 183-191, April.
- Liang, Han-Ying & Su, Chun, 1999. "Complete convergence for weighted sums of NA sequences," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 85-95, October.
- Liang, Han-Ying & Jing, Bing-Yi, 2005. "Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 227-245, August.
- Arenal-Gutiérrez, Eusebio & Matrán, Carlos & Cuesta-Albertos, Juan A., 1996. "On the unconditional strong law of large numbers for the bootstrap mean," Statistics & Probability Letters, Elsevier, vol. 27(1), pages 49-60, March.
- Vu T. N. Anh & Nguyen T. T. Hien & Le V. Thanh & Vo T. H. Van, 2021. "The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences," Journal of Theoretical Probability, Springer, vol. 34(1), pages 331-348, March.
- Renyu Ye & Xinsheng Liu & Yuncai Yu, 2020. "Pointwise Optimality of Wavelet Density Estimation for Negatively Associated Biased Sample," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
- Iacus, Stefano M. & Yoshida, Nakahiro, 2012.
"Estimation for the change point of volatility in a stochastic differential equation,"
Stochastic Processes and their Applications, Elsevier, vol. 122(3), pages 1068-1092.
- Stefano Iacus & Nakahiro Yoshida, 2009. "Estimation for the change point of the volatility in a stochastic differential equation," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1084, Universitá degli Studi di Milano.
- Stefano Maria IACUS & Nakahiro YOSHIDA, 2009. "Estimation for the change point of the volatility in a stochastic differential equation," Departmental Working Papers 2009-49, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
- Hu, Taizhong & Hu, Jinjin, 1999. "Sufficient conditions for negative association of random variables," Statistics & Probability Letters, Elsevier, vol. 45(2), pages 167-173, November.
More about this item
Keywords
The Hajeck-Rényi inequality Negatively associated random variables Marcinkiewicz strong law of large numbers;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:43:y:1999:i:1:p:99-105. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.