IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v21y2008i4d10.1007_s10959-007-0128-4.html
   My bibliography  Save this article

Strong Limit Theorems for Weighted Sums of Negatively Associated Random Variables

Author

Listed:
  • Bing-Yi Jing

    (Hong Kong Univ. of Science and Technology)

  • Han-Ying Liang

    (Tongji University)

Abstract

In this paper, we establish strong laws for weighted sums of identically distributed negatively associated random variables. Marcinkiewicz-Zygmund’s strong law of large numbers is extended to weighted sums of negatively associated random variables. Furthermore, we investigate various limit properties of Cesàro’s and Riesz’s sums of negatively associated random variables. Some of the results in the i.i.d. setting, such as those in Jajte (Ann. Probab. 31(1), 409–412, 2003), Bai and Cheng (Stat. Probab. Lett. 46, 105–112, 2000), Li et al. (J. Theor. Probab. 8, 49–76, 1995) and Gut (Probab. Theory Relat. Fields 97, 169–178, 1993) are also improved and extended to the negatively associated setting.

Suggested Citation

  • Bing-Yi Jing & Han-Ying Liang, 2008. "Strong Limit Theorems for Weighted Sums of Negatively Associated Random Variables," Journal of Theoretical Probability, Springer, vol. 21(4), pages 890-909, December.
  • Handle: RePEc:spr:jotpro:v:21:y:2008:i:4:d:10.1007_s10959-007-0128-4
    DOI: 10.1007/s10959-007-0128-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-007-0128-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-007-0128-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pruss, Alexander R., 1997. "A two-sided estimate in the Hsu--Robbins--Erdös law of large numbers," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 173-180, October.
    2. Shao, Qi-Man & Su, Chun, 1999. "The law of the iterated logarithm for negatively associated random variables," Stochastic Processes and their Applications, Elsevier, vol. 83(1), pages 139-148, September.
    3. Roussas, G. G., 1994. "Asymptotic Normality of Random Fields of Positively or Negatively Associated Processes," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 152-173, July.
    4. Matula, Przemyslaw, 1992. "A note on the almost sure convergence of sums of negatively dependent random variables," Statistics & Probability Letters, Elsevier, vol. 15(3), pages 209-213, October.
    5. Liang, Han-Ying & Su, Chun, 1999. "Complete convergence for weighted sums of NA sequences," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 85-95, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vu T. N. Anh & Nguyen T. T. Hien & Le V. Thanh & Vo T. H. Van, 2021. "The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences," Journal of Theoretical Probability, Springer, vol. 34(1), pages 331-348, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Han-Ying & Fan, Guo-Liang, 2009. "Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 1-15, January.
    2. Wang, Jiang-Feng & Liang, Han-Ying, 2008. "A note on the almost sure central limit theorem for negatively associated fields," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1964-1970, September.
    3. Huang, Wen-Tao & Xu, Bing, 2002. "Some maximal inequalities and complete convergences of negatively associated random sequences," Statistics & Probability Letters, Elsevier, vol. 57(2), pages 183-191, April.
    4. Zhang, Li-Xin & Wen, Jiwei, 2001. "A weak convergence for negatively associated fields," Statistics & Probability Letters, Elsevier, vol. 53(3), pages 259-267, June.
    5. Liang, Han-Ying, 2000. "Complete convergence for weighted sums of negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 48(4), pages 317-325, July.
    6. Ming Yuan & Chun Su & Taizhong Hu, 2003. "A Central Limit Theorem for Random Fields of Negatively Associated Processes," Journal of Theoretical Probability, Springer, vol. 16(2), pages 309-323, April.
    7. Liang, Han-Ying & Jing, Bing-Yi, 2005. "Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 227-245, August.
    8. Han-Ying Liang & Jong-Il Baek, 2008. "Berry–Esseen bounds for density estimates under NA assumption," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 68(3), pages 305-322, November.
    9. Zhang, Li-Xin, 2001. "Strassen's law of the iterated logarithm for negatively associated random vectors," Stochastic Processes and their Applications, Elsevier, vol. 95(2), pages 311-328, October.
    10. Gu, Wentao & Roussas, George G. & Tran, Lanh T., 2007. "On the convergence rate of fixed design regression estimators for negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1214-1224, July.
    11. Qin, Yongsong & Li, Yinghua, 2011. "Empirical likelihood for linear models under negatively associated errors," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 153-163, January.
    12. Bulinski, Alexander & Suquet, Charles, 2001. "Normal approximation for quasi-associated random fields," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 215-226, September.
    13. Huang, Wei, 2003. "A law of the iterated logarithm for geometrically weighted series of negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 63(2), pages 133-143, June.
    14. Qi-Man Shao, 2000. "A Comparison Theorem on Moment Inequalities Between Negatively Associated and Independent Random Variables," Journal of Theoretical Probability, Springer, vol. 13(2), pages 343-356, April.
    15. Liang, Han-Ying & Su, Chun, 1999. "Complete convergence for weighted sums of NA sequences," Statistics & Probability Letters, Elsevier, vol. 45(1), pages 85-95, October.
    16. Renyu Ye & Xinsheng Liu & Yuncai Yu, 2020. "Pointwise Optimality of Wavelet Density Estimation for Negatively Associated Biased Sample," Mathematics, MDPI, vol. 8(2), pages 1-12, February.
    17. Liu, Jingjun & Gan, Shixin & Chen, Pingyan, 1999. "The Hájeck-Rényi inequality for the NA random variables and its application," Statistics & Probability Letters, Elsevier, vol. 43(1), pages 99-105, May.
    18. Cai, Zongwu & Roussas, George G., 1998. "Kaplan-Meier Estimator under Association," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 318-348, November.
    19. Kim, Tae-Sung & Ko, Mi-Hwa & Han, Kwang-Hee, 2008. "On the almost sure convergence for a linear process generated by negatively associated random variables in a Hilbert space," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2110-2115, October.
    20. Dagmara Dudek & Anna Kuczmaszewska, 2024. "Some practical and theoretical issues related to the quantile estimators," Statistical Papers, Springer, vol. 65(6), pages 3917-3933, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:21:y:2008:i:4:d:10.1007_s10959-007-0128-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.