IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v95y2001i1p83-107.html
   My bibliography  Save this article

Asymptotic properties and absolute continuity of laws stable by random weighted mean

Author

Listed:
  • Liu, Quansheng

Abstract

We study properties of stable-like laws, which are solutions of the distributional equation where (N,A1,A2,...) is a given random variable with values in {0,1,...}x[0,[infinity])x[0,[infinity])x..., and Z,Z1,Z2,... are identically distributed positive random variables, independent of each other and independent of (N,A1,A2,...). Examples of such laws contain the laws of the well-known limit random variables in: (a) the Galton-Watson process or general branching processes, (b) branching random walks, (c) multiplicative processes, and (d) smoothing processes. For any solution Z (with finite or infinite mean), we find asymptotic properties of the distribution function P(Z[less-than-or-equals, slant]x) and those of the characteristic function EeitZ; we prove that the distribution of Z is absolutely continuous on (0,[infinity]), and that its support is the whole half-line [0,[infinity]). Solutions which are not necessarily positive are also considered.

Suggested Citation

  • Liu, Quansheng, 2001. "Asymptotic properties and absolute continuity of laws stable by random weighted mean," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 83-107, September.
  • Handle: RePEc:eee:spapps:v:95:y:2001:i:1:p:83-107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00092-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Quansheng, 1999. "Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks," Stochastic Processes and their Applications, Elsevier, vol. 82(1), pages 61-87, July.
    2. Liu, Quansheng, 2000. "On generalized multiplicative cascades," Stochastic Processes and their Applications, Elsevier, vol. 86(2), pages 263-286, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bertoin, Jean, 2006. "Different aspects of a random fragmentation model," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 345-369, March.
    2. Xiaoqiang Wang & Chunmao Huang, 2017. "Convergence of Martingale and Moderate Deviations for a Branching Random Walk with a Random Environment in Time," Journal of Theoretical Probability, Springer, vol. 30(3), pages 961-995, September.
    3. Brigitte Chauvin & Cécile Mailler & Nicolas Pouyanne, 2015. "Smoothing Equations for Large Pólya Urns," Journal of Theoretical Probability, Springer, vol. 28(3), pages 923-957, September.
    4. Bassetti, Federico & Matthes, Daniel, 2014. "Multi-dimensional smoothing transformations: Existence, regularity and stability of fixed points," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 154-198.
    5. Bassetti, Federico & Ladelli, Lucia, 2023. "Central limit theorem in uniform metrics for generalized Kac equations," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    6. Quansheng Liu & Emmanuel Rio & Alain Rouault, 2003. "Limit Theorems for Multiplicative Processes," Journal of Theoretical Probability, Springer, vol. 16(4), pages 971-1014, October.
    7. Roozegar, Rasool & Soltani, A.R., 2015. "On the asymptotic behavior of randomly weighted averages," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 269-272.
    8. Caliebe, Amke & Rösler, Uwe, 2003. "Fixed points with finite variance of a smoothing transformation," Stochastic Processes and their Applications, Elsevier, vol. 107(1), pages 105-129, September.
    9. Yang, Hairuo, 2023. "On the law of terminal value of additive martingales in a remarkable branching stable process," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 361-376.
    10. Caputo, Pietro & Quattropani, Matteo, 2021. "Mixing time trichotomy in regenerating dynamic digraphs," Stochastic Processes and their Applications, Elsevier, vol. 137(C), pages 222-251.
    11. Huang, Chunmao & Liu, Quansheng, 2012. "Moments, moderate and large deviations for a branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 522-545.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuhlbusch, Dirk, 2004. "On weighted branching processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 113-144, January.
    2. Li, Yingqiu & Liu, Quansheng & Peng, Xuelian, 2019. "Harmonic moments, large and moderate deviation principles for Mandelbrot’s cascade in a random environment," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 57-65.
    3. Buraczewski, Dariusz, 2009. "On tails of fixed points of the smoothing transform in the boundary case," Stochastic Processes and their Applications, Elsevier, vol. 119(11), pages 3955-3961, November.
    4. Olvera-Cravioto, Mariana, 2012. "Tail behavior of solutions of linear recursions on trees," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1777-1807.
    5. Decrouez, Geoffrey & Hambly, Ben & Jones, Owen Dafydd, 2015. "The Hausdorff spectrum of a class of multifractal processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1541-1568.
    6. Buraczewski, D. & Damek, E. & Zienkiewicz, J., 2018. "Pointwise estimates for first passage times of perpetuity sequences," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2923-2951.
    7. Iksanov, Aleksander M., 2004. "Elementary fixed points of the BRW smoothing transforms with infinite number of summands," Stochastic Processes and their Applications, Elsevier, vol. 114(1), pages 27-50, November.
    8. Bertoin, Jean, 2006. "Different aspects of a random fragmentation model," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 345-369, March.
    9. Buraczewski, Dariusz & Damek, Ewa & Mentemeier, Sebastian & Mirek, Mariusz, 2013. "Heavy tailed solutions of multivariate smoothing transforms," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 1947-1986.
    10. Xiaoqiang Wang & Chunmao Huang, 2017. "Convergence of Martingale and Moderate Deviations for a Branching Random Walk with a Random Environment in Time," Journal of Theoretical Probability, Springer, vol. 30(3), pages 961-995, September.
    11. Liu, Quansheng & Watbled, Frédérique, 2009. "Exponential inequalities for martingales and asymptotic properties of the free energy of directed polymers in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3101-3132, October.
    12. Gao, Zhiqiang & Liu, Quansheng, 2016. "Exact convergence rates in central limit theorems for a branching random walk with a random environment in time," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2634-2664.
    13. Basrak, Bojan & Conroy, Michael & Olvera-Cravioto, Mariana & Palmowski, Zbigniew, 2022. "Importance sampling for maxima on trees," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 139-179.
    14. Bassetti, Federico & Matthes, Daniel, 2014. "Multi-dimensional smoothing transformations: Existence, regularity and stability of fixed points," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 154-198.
    15. Ghorbel, M. & Huillet, T., 2007. "Additional aspects of the non-conservative Kolmogorov–Filippov fragmentation model," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1569-1583.
    16. Bassetti, Federico & Ladelli, Lucia, 2023. "Central limit theorem in uniform metrics for generalized Kac equations," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    17. Chen, Dayue & de Raphélis, Loïc & Hu, Yueyun, 2018. "Favorite sites of randomly biased walks on a supercritical Galton–Watson tree," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1525-1557.
    18. Bertoin, Jean, 2008. "Asymptotic regimes for the occupancy scheme of multiplicative cascades," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1586-1605, September.
    19. Huang, Chunmao & Liu, Quansheng, 2024. "Limit theorems for a branching random walk in a random or varying environment," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    20. Yang, Hairuo, 2023. "On the law of terminal value of additive martingales in a remarkable branching stable process," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 361-376.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:95:y:2001:i:1:p:83-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.