IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v30y2017i3d10.1007_s10959-016-0668-6.html
   My bibliography  Save this article

Convergence of Martingale and Moderate Deviations for a Branching Random Walk with a Random Environment in Time

Author

Listed:
  • Xiaoqiang Wang

    (Shandong University (Weihai))

  • Chunmao Huang

    (Harbin Institute of Technology at Weihai)

Abstract

We consider a branching random walk on $${\mathbb {R}}$$ R with a stationary and ergodic environment $$\xi =(\xi _n)$$ ξ = ( ξ n ) indexed by time $$n\in {\mathbb {N}}$$ n ∈ N . Let $$Z_n$$ Z n be the counting measure of particles of generation n and $$\tilde{Z}_n(t)=\int \mathrm{e}^{tx}Z_n(\mathrm{d}x)$$ Z ~ n ( t ) = ∫ e t x Z n ( d x ) be its Laplace transform. We show the $$L^p$$ L p convergence rate and the uniform convergence of the martingale $$\tilde{Z}_n(t)/{\mathbb {E}}[\tilde{Z}_n(t)|\xi ]$$ Z ~ n ( t ) / E [ Z ~ n ( t ) | ξ ] , and establish a moderate deviation principle for the measures $$Z_n$$ Z n .

Suggested Citation

  • Xiaoqiang Wang & Chunmao Huang, 2017. "Convergence of Martingale and Moderate Deviations for a Branching Random Walk with a Random Environment in Time," Journal of Theoretical Probability, Springer, vol. 30(3), pages 961-995, September.
  • Handle: RePEc:spr:jotpro:v:30:y:2017:i:3:d:10.1007_s10959-016-0668-6
    DOI: 10.1007/s10959-016-0668-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-016-0668-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-016-0668-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis Comets & Nobuo Yoshida, 2011. "Branching Random Walks in Space–Time Random Environment: Survival Probability, Global and Local Growth Rates," Journal of Theoretical Probability, Springer, vol. 24(3), pages 657-687, September.
    2. Kuhlbusch, Dirk, 2004. "On weighted branching processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 113-144, January.
    3. Kaplan, Norman & Asmussen, Soren, 1976. "Branching random walks II," Stochastic Processes and their Applications, Elsevier, vol. 4(1), pages 15-31, January.
    4. Asmussen, Soren & Kaplan, Norman, 1976. "Branching random walks I," Stochastic Processes and their Applications, Elsevier, vol. 4(1), pages 1-13, January.
    5. Biggins, J. D., 1990. "The central limit theorem for the supercritical branching random walk, and related results," Stochastic Processes and their Applications, Elsevier, vol. 34(2), pages 255-274, April.
    6. Najmeddine Attia, 2014. "On the Multifractal Analysis of the Branching Random Walk in $$\mathbb{R }^d$$ R d," Journal of Theoretical Probability, Springer, vol. 27(4), pages 1329-1349, December.
    7. Liu, Quansheng, 2001. "Asymptotic properties and absolute continuity of laws stable by random weighted mean," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 83-107, September.
    8. Liu, Quansheng, 2000. "On generalized multiplicative cascades," Stochastic Processes and their Applications, Elsevier, vol. 86(2), pages 263-286, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Chunmao & Liu, Quansheng, 2024. "Limit theorems for a branching random walk in a random or varying environment," Stochastic Processes and their Applications, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Zhiqiang & Liu, Quansheng, 2016. "Exact convergence rates in central limit theorems for a branching random walk with a random environment in time," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2634-2664.
    2. Huang, Chunmao & Liu, Quansheng, 2024. "Limit theorems for a branching random walk in a random or varying environment," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    3. Gao, Zhi-Qiang, 2018. "A second order asymptotic expansion in the local limit theorem for a simple branching random walk in Zd," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4000-4017.
    4. Shi, Wanlin, 2019. "A note on large deviation probabilities for empirical distribution of branching random walks," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 18-28.
    5. Bertoin, Jean, 2006. "Different aspects of a random fragmentation model," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 345-369, March.
    6. Gao, Zhi-Qiang, 2019. "Exact convergence rate in the local central limit theorem for a lattice branching random walk on Zd," Statistics & Probability Letters, Elsevier, vol. 151(C), pages 58-66.
    7. Gao, Zhiqiang, 2017. "Exact convergence rate of the local limit theorem for branching random walks on the integer lattice," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1282-1296.
    8. Vincent Bansaye, 2019. "Ancestral Lineages and Limit Theorems for Branching Markov Chains in Varying Environment," Journal of Theoretical Probability, Springer, vol. 32(1), pages 249-281, March.
    9. Bassetti, Federico & Matthes, Daniel, 2014. "Multi-dimensional smoothing transformations: Existence, regularity and stability of fixed points," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 154-198.
    10. Bassetti, Federico & Ladelli, Lucia, 2023. "Central limit theorem in uniform metrics for generalized Kac equations," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    11. Li, Yingqiu & Liu, Quansheng & Peng, Xuelian, 2019. "Harmonic moments, large and moderate deviation principles for Mandelbrot’s cascade in a random environment," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 57-65.
    12. Yang, Hairuo, 2023. "On the law of terminal value of additive martingales in a remarkable branching stable process," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 361-376.
    13. Quansheng Liu & Emmanuel Rio & Alain Rouault, 2003. "Limit Theorems for Multiplicative Processes," Journal of Theoretical Probability, Springer, vol. 16(4), pages 971-1014, October.
    14. Borovkov, K. & Motyer, A., 2005. "On the asymptotic behaviour of a simple growing point process model," Statistics & Probability Letters, Elsevier, vol. 72(3), pages 265-275, May.
    15. Durrett, R. & Lanchier, N., 2008. "Coexistence in host-pathogen systems," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 1004-1021, June.
    16. Caliebe, Amke & Rösler, Uwe, 2003. "Fixed points with finite variance of a smoothing transformation," Stochastic Processes and their Applications, Elsevier, vol. 107(1), pages 105-129, September.
    17. Olvera-Cravioto, Mariana, 2012. "Tail behavior of solutions of linear recursions on trees," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1777-1807.
    18. Onur Gün & Wolfgang König & Ozren Sekulović, 2015. "Moment Asymptotics for Multitype Branching Random Walks in Random Environment," Journal of Theoretical Probability, Springer, vol. 28(4), pages 1726-1742, December.
    19. Decrouez, Geoffrey & Hambly, Ben & Jones, Owen Dafydd, 2015. "The Hausdorff spectrum of a class of multifractal processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1541-1568.
    20. Buraczewski, D. & Damek, E. & Zienkiewicz, J., 2018. "Pointwise estimates for first passage times of perpetuity sequences," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2923-2951.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:30:y:2017:i:3:d:10.1007_s10959-016-0668-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.