IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v82y1999i1p61-87.html
   My bibliography  Save this article

Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks

Author

Listed:
  • Liu, Quansheng

Abstract

Let (Z(t): t[greater-or-equal, slanted]0) be a supercritical age-dependent branching process and let {Yn} be the natural martingale arising in a homogeneous branching random walk. Let Z be the almost sure limit of Z(t)/EZ(t)(t-->[infinity]) or that of Yn (n-->[infinity]). We study the following problems: (a) the absolute continuity of the distribution of Z and the regularity of the density function; (b) the decay rate (polynomial or exponential) of the left tail probability P(Z[less-than-or-equals, slant]x) as x-->0, and that of the characteristic function EeitZ and its derivative as t-->[infinity]; (c) the moments and decay rate (polynomial or exponential) of the right tail probability P(Z>x) as x-->[infinity], the analyticity of the characteristic function [phi](t)=EeitZ and its growth rate as an entire characteristic function. The results are established for non-trivial solutions of an associated functional equation, and are therefore also applicable for other limit variables arising in age-dependent branching processes and in homogeneous branching random walks.

Suggested Citation

  • Liu, Quansheng, 1999. "Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks," Stochastic Processes and their Applications, Elsevier, vol. 82(1), pages 61-87, July.
  • Handle: RePEc:eee:spapps:v:82:y:1999:i:1:p:61-87
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(99)00008-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yingqiu & Liu, Quansheng & Peng, Xuelian, 2019. "Harmonic moments, large and moderate deviation principles for Mandelbrot’s cascade in a random environment," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 57-65.
    2. Buraczewski, Dariusz, 2009. "On tails of fixed points of the smoothing transform in the boundary case," Stochastic Processes and their Applications, Elsevier, vol. 119(11), pages 3955-3961, November.
    3. Liu, Quansheng, 2001. "Asymptotic properties and absolute continuity of laws stable by random weighted mean," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 83-107, September.
    4. Brigitte Chauvin & Cécile Mailler & Nicolas Pouyanne, 2015. "Smoothing Equations for Large Pólya Urns," Journal of Theoretical Probability, Springer, vol. 28(3), pages 923-957, September.
    5. Kuhlbusch, Dirk, 2004. "On weighted branching processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 113-144, January.
    6. Huang, Chunmao & Liu, Quansheng, 2012. "Moments, moderate and large deviations for a branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 522-545.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:82:y:1999:i:1:p:61-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.