IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v147y2019icp57-65.html
   My bibliography  Save this article

Harmonic moments, large and moderate deviation principles for Mandelbrot’s cascade in a random environment

Author

Listed:
  • Li, Yingqiu
  • Liu, Quansheng
  • Peng, Xuelian

Abstract

For Mandelbrot’s cascade in a random environment, we find the critical value for the existence of harmonic moments of the limit variable of Mandelbrot’s martingale, and establish large and moderate deviation principles for the free energy. As applications, we show the corresponding limit theorems for branching random walks in random environments.

Suggested Citation

  • Li, Yingqiu & Liu, Quansheng & Peng, Xuelian, 2019. "Harmonic moments, large and moderate deviation principles for Mandelbrot’s cascade in a random environment," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 57-65.
  • Handle: RePEc:eee:stapro:v:147:y:2019:i:c:p:57-65
    DOI: 10.1016/j.spl.2018.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218303183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Quansheng, 1999. "Asymptotic properties of supercritical age-dependent branching processes and homogeneous branching random walks," Stochastic Processes and their Applications, Elsevier, vol. 82(1), pages 61-87, July.
    2. Gao, Zhiqiang & Liu, Quansheng, 2016. "Exact convergence rates in central limit theorems for a branching random walk with a random environment in time," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2634-2664.
    3. Kuhlbusch, Dirk, 2004. "On weighted branching processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 113-144, January.
    4. Huang, Chunmao & Liu, Quansheng, 2012. "Moments, moderate and large deviations for a branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 522-545.
    5. Liu, Quansheng, 2000. "On generalized multiplicative cascades," Stochastic Processes and their Applications, Elsevier, vol. 86(2), pages 263-286, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chunmao & Liu, Quansheng, 2024. "Limit theorems for a branching random walk in a random or varying environment," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    2. Kuhlbusch, Dirk, 2004. "On weighted branching processes in random environment," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 113-144, January.
    3. Buraczewski, Dariusz, 2009. "On tails of fixed points of the smoothing transform in the boundary case," Stochastic Processes and their Applications, Elsevier, vol. 119(11), pages 3955-3961, November.
    4. Xiaoqiang Wang & Chunmao Huang, 2017. "Convergence of Martingale and Moderate Deviations for a Branching Random Walk with a Random Environment in Time," Journal of Theoretical Probability, Springer, vol. 30(3), pages 961-995, September.
    5. Gao, Zhiqiang & Liu, Quansheng, 2016. "Exact convergence rates in central limit theorems for a branching random walk with a random environment in time," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2634-2664.
    6. Liu, Quansheng, 2001. "Asymptotic properties and absolute continuity of laws stable by random weighted mean," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 83-107, September.
    7. Olvera-Cravioto, Mariana, 2012. "Tail behavior of solutions of linear recursions on trees," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1777-1807.
    8. Decrouez, Geoffrey & Hambly, Ben & Jones, Owen Dafydd, 2015. "The Hausdorff spectrum of a class of multifractal processes," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1541-1568.
    9. Haojie Hou & Yan-Xia Ren & Renming Song, 2024. "Asymptotic Expansions for Additive Measures of Branching Brownian Motions," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3355-3394, November.
    10. Gao, Zhi-Qiang, 2018. "A second order asymptotic expansion in the local limit theorem for a simple branching random walk in Zd," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4000-4017.
    11. Buraczewski, D. & Damek, E. & Zienkiewicz, J., 2018. "Pointwise estimates for first passage times of perpetuity sequences," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 2923-2951.
    12. Buraczewski, Dariusz & Damek, Ewa & Mentemeier, Sebastian & Mirek, Mariusz, 2013. "Heavy tailed solutions of multivariate smoothing transforms," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 1947-1986.
    13. Basrak, Bojan & Conroy, Michael & Olvera-Cravioto, Mariana & Palmowski, Zbigniew, 2022. "Importance sampling for maxima on trees," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 139-179.
    14. Bassetti, Federico & Matthes, Daniel, 2014. "Multi-dimensional smoothing transformations: Existence, regularity and stability of fixed points," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 154-198.
    15. Ghorbel, M. & Huillet, T., 2007. "Additional aspects of the non-conservative Kolmogorov–Filippov fragmentation model," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1569-1583.
    16. Bassetti, Federico & Ladelli, Lucia, 2023. "Central limit theorem in uniform metrics for generalized Kac equations," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    17. Bertoin, Jean, 2008. "Asymptotic regimes for the occupancy scheme of multiplicative cascades," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1586-1605, September.
    18. Grama, Ion & Liu, Quansheng & Miqueu, Eric, 2017. "Berry–Esseen’s bound and Cramér’s large deviation expansion for a supercritical branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1255-1281.
    19. Yang, Hairuo, 2023. "On the law of terminal value of additive martingales in a remarkable branching stable process," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 361-376.
    20. Huang, Chunmao & Liu, Quansheng, 2012. "Moments, moderate and large deviations for a branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 522-545.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:147:y:2019:i:c:p:57-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.