IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v137y2021icp222-251.html
   My bibliography  Save this article

Mixing time trichotomy in regenerating dynamic digraphs

Author

Listed:
  • Caputo, Pietro
  • Quattropani, Matteo

Abstract

We study the convergence to stationarity for random walks on dynamic random digraphs with given degree sequences. The digraphs undergo full regeneration at independent geometrically distributed random time intervals with parameter α. Relaxation to stationarity is the result of an interplay of regeneration and mixing on the static digraph. When the number of vertices n tends to infinity and the parameter α tends to zero, we find three scenarios according to whether αlogn converges to zero, infinity or to some finite positive value: when the limit is zero, relaxation to stationarity occurs in two separate stages, the first due to mixing on the static digraph, and the second due to regeneration; when the limit is infinite, there is not enough time for the static digraph to mix and the relaxation to stationarity is dictated by the regeneration only; finally, when the limit is a finite positive value we find a mixed behavior interpolating between the two extremes. A crucial ingredient of our analysis is the control of suitable approximations for the unknown stationary distribution.

Suggested Citation

  • Caputo, Pietro & Quattropani, Matteo, 2021. "Mixing time trichotomy in regenerating dynamic digraphs," Stochastic Processes and their Applications, Elsevier, vol. 137(C), pages 222-251.
  • Handle: RePEc:eee:spapps:v:137:y:2021:i:c:p:222-251
    DOI: 10.1016/j.spa.2021.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921000314
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Quansheng, 2001. "Asymptotic properties and absolute continuity of laws stable by random weighted mean," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 83-107, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quattropani, Matteo & Sau, Federico, 2023. "On the meeting of random walks on random DFA," Stochastic Processes and their Applications, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bassetti, Federico & Matthes, Daniel, 2014. "Multi-dimensional smoothing transformations: Existence, regularity and stability of fixed points," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 154-198.
    2. Bassetti, Federico & Ladelli, Lucia, 2023. "Central limit theorem in uniform metrics for generalized Kac equations," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    3. Yang, Hairuo, 2023. "On the law of terminal value of additive martingales in a remarkable branching stable process," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 361-376.
    4. Huang, Chunmao & Liu, Quansheng, 2012. "Moments, moderate and large deviations for a branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 522-545.
    5. Quansheng Liu & Emmanuel Rio & Alain Rouault, 2003. "Limit Theorems for Multiplicative Processes," Journal of Theoretical Probability, Springer, vol. 16(4), pages 971-1014, October.
    6. Bertoin, Jean, 2006. "Different aspects of a random fragmentation model," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 345-369, March.
    7. Xiaoqiang Wang & Chunmao Huang, 2017. "Convergence of Martingale and Moderate Deviations for a Branching Random Walk with a Random Environment in Time," Journal of Theoretical Probability, Springer, vol. 30(3), pages 961-995, September.
    8. Roozegar, Rasool & Soltani, A.R., 2015. "On the asymptotic behavior of randomly weighted averages," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 269-272.
    9. Caliebe, Amke & Rösler, Uwe, 2003. "Fixed points with finite variance of a smoothing transformation," Stochastic Processes and their Applications, Elsevier, vol. 107(1), pages 105-129, September.
    10. Brigitte Chauvin & Cécile Mailler & Nicolas Pouyanne, 2015. "Smoothing Equations for Large Pólya Urns," Journal of Theoretical Probability, Springer, vol. 28(3), pages 923-957, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:137:y:2021:i:c:p:222-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.