IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v31y2018i2d10.1007_s10959-016-0727-z.html
   My bibliography  Save this article

One-Sided FKPP Travelling Waves for Homogeneous Fragmentation Processes

Author

Listed:
  • Robert Knobloch

    (Saarland University)

Abstract

In this paper, we introduce an analogue of the classical one-sided FKPP equation in the context of homogeneous fragmentation processes. The main result of the present paper is concerned with the existence and uniqueness of one-sided FKPP travelling waves in this setting. In addition, we prove some analytic properties of such travelling waves. Our techniques make use of fragmentation processes with killing, an associated product martingale as well as various properties of Lévy processes. This paper is mainly concerned with general fragmentation processes, but we also devote a section to related considerations regarding fragmentations with a finite dislocation measure, where we obtain a stronger result than for fragmentation processes with an infinite jump activity over finite time horizons. Furthermore, we discuss the relation of our problem to similar questions in the setting of branching Brownian motions, which provides a motivation for our approach.

Suggested Citation

  • Robert Knobloch, 2018. "One-Sided FKPP Travelling Waves for Homogeneous Fragmentation Processes," Journal of Theoretical Probability, Springer, vol. 31(2), pages 895-931, June.
  • Handle: RePEc:spr:jotpro:v:31:y:2018:i:2:d:10.1007_s10959-016-0727-z
    DOI: 10.1007/s10959-016-0727-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-016-0727-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-016-0727-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kyprianou, A. E., 1999. "A note on branching Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 82(1), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:31:y:2018:i:2:d:10.1007_s10959-016-0727-z. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.