IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v149y2022icp1-38.html
   My bibliography  Save this article

Stochastic functional differential equations with infinite delay under non-Lipschitz coefficients: Existence and uniqueness, Markov property, ergodicity, and asymptotic log-Harnack inequality

Author

Listed:
  • Wang, Ya
  • Wu, Fuke
  • Yin, George
  • Zhu, Chao

Abstract

This paper focuses on a class of stochastic functional differential equations with infinite delay and non-Lipschitz coefficients. Under one-sided super-linear growth and non-Lipschitz conditions, this paper establishes the existence and uniqueness of strong solutions and strong Markov properties of the segment processes. Under additional assumption on non-degeneracy of the diffusion coefficient, exponential ergodicity for the segment process is derived by using asymptotic coupling method. In addition, the asymptotic log-Harnack inequality is established for the associated Markovian semigroup by using coupling and change of measures, which implies the asymptotically strong Feller property. Finally, an example is given to demonstrate these results.

Suggested Citation

  • Wang, Ya & Wu, Fuke & Yin, George & Zhu, Chao, 2022. "Stochastic functional differential equations with infinite delay under non-Lipschitz coefficients: Existence and uniqueness, Markov property, ergodicity, and asymptotic log-Harnack inequality," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 1-38.
  • Handle: RePEc:eee:spapps:v:149:y:2022:i:c:p:1-38
    DOI: 10.1016/j.spa.2022.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922000643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Arnaudon, Marc & Thalmaier, Anton & Wang, Feng-Yu, 2009. "Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3653-3670, October.
    3. Wang, Feng-Yu & Yuan, Chenggui, 2011. "Harnack inequalities for functional SDEs with multiplicative noise and applications," Stochastic Processes and their Applications, Elsevier, vol. 121(11), pages 2692-2710, November.
    4. Jianhai Bao & Feng‐Yu Wang & Chenggui Yuan, 2020. "Ergodicity for neutral type SDEs with infinite length of memory," Mathematische Nachrichten, Wiley Blackwell, vol. 293(9), pages 1675-1690, September.
    5. Bao, Jianhai & Wang, Feng-Yu & Yuan, Chenggui, 2019. "Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4576-4596.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianhai Bao & Feng‐Yu Wang & Chenggui Yuan, 2020. "Ergodicity for neutral type SDEs with infinite length of memory," Mathematische Nachrichten, Wiley Blackwell, vol. 293(9), pages 1675-1690, September.
    2. Zong, Gaofeng & Chen, Zengjing, 2013. "Harnack inequality for mean-field stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1424-1432.
    3. Bao, Jianhai & Wang, Feng-Yu & Yuan, Chenggui, 2019. "Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4576-4596.
    4. Wang, Feng-Yu & Zhang, Tusheng, 2014. "Log-Harnack inequality for mild solutions of SPDEs with multiplicative noise," Stochastic Processes and their Applications, Elsevier, vol. 124(3), pages 1261-1274.
    5. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    6. Hisashi Nakamura & Wataru Nozawa & Akihiko Takahashi, 2009. "Macroeconomic Implications of Term Structures of Interest Rates Under Stochastic Differential Utility with Non-Unitary EIS," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(3), pages 231-263, September.
    7. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    8. Henry, Olan T. & Olekalns, Nilss & Suardi, Sandy, 2007. "Testing for rate dependence and asymmetry in inflation uncertainty: Evidence from the G7 economies," Economics Letters, Elsevier, vol. 94(3), pages 383-388, March.
    9. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    10. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    11. Sandrine Lardic & Claire Gauthier, 2003. "Un modèle multifactoriel des spreads de crédit : estimation sur panels complets et incomplets," Économie et Prévision, Programme National Persée, vol. 159(3), pages 53-69.
    12. A. Itkin & V. Shcherbakov & A. Veygman, 2019. "New Model For Pricing Quanto Credit Default Swaps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-37, May.
    13. Tomas Björk & Magnus Blix & Camilla Landén, 2006. "On Finite Dimensional Realizations For The Term Structure Of Futures Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 281-314.
    14. Ben S. Bernanke & Vincent R. Reinhart & Brian P. Sack, 2004. "Monetary Policy Alternatives at the Zero Bound: An Empirical Assessment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 35(2), pages 1-100.
    15. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    16. Goovaerts, M. J. & Dhaene, J., 1999. "Supermodular ordering and stochastic annuities," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 281-290, May.
    17. Bekaert, Geert & Engstrom, Eric & Grenadier, Steven R., 2010. "Stock and bond returns with Moody Investors," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 867-894, December.
    18. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    19. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    20. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:149:y:2022:i:c:p:1-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.