IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v80y2018i3p509-529.html
   My bibliography  Save this article

Detecting and dating structural breaks in functional data without dimension reduction

Author

Listed:
  • Alexander Aue
  • Gregory Rice
  • Ozan Sönmez

Abstract

Methodology is proposed to uncover structural breaks in functional data that is ‘fully functional’ in the sense that it does not rely on dimension reduction techniques. A thorough asymptotic theory is developed for a fully functional break detection procedure as well as for a break date estimator, assuming a fixed break size and a shrinking break size. The latter result is utilized to derive confidence intervals for the unknown break date. The main results highlight that the fully functional procedures perform best under conditions when analogous estimators based on functional principal component analysis are at their worst, namely when the feature of interest is orthogonal to the leading principal components of the data. The theoretical findings are confirmed by means of a Monte Carlo simulation study in finite samples. An application to annual temperature curves illustrates the practical relevance of the procedures proposed.

Suggested Citation

  • Alexander Aue & Gregory Rice & Ozan Sönmez, 2018. "Detecting and dating structural breaks in functional data without dimension reduction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 509-529, June.
  • Handle: RePEc:bla:jorssb:v:80:y:2018:i:3:p:509-529
    DOI: 10.1111/rssb.12257
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12257
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12257?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    2. Mengchen Wang & Trevor Harris & Bo Li, 2023. "Asynchronous Changepoint Estimation for Spatially Correlated Functional Time Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 157-176, March.
    3. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    5. Franke, Jürgen & Hefter, Mario & Herzwurm, André & Ritter, Klaus & Schwaar, Stefanie, 2022. "Adaptive quantile computation for Brownian bridge in change-point analysis," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    6. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. B. Cooper Boniece & Lajos Horv'ath & Lorenzo Trapani, 2023. "On changepoint detection in functional data using empirical energy distance," Papers 2310.04853, arXiv.org.
    8. Trevor Harris & Bo Li & J. Derek Tucker, 2022. "Scalable multiple changepoint detection for functional data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
    9. Hu, Qirui, 2024. "Change point analysis of functional variance function with stationary error," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    10. Qing Yang & Yu-Ning Li & Yi Zhang, 2020. "Change point detection for nonparametric regression under strongly mixing process," Statistical Papers, Springer, vol. 61(4), pages 1465-1506, August.
    11. Jialiang Li & Yaguang Li & Tailen Hsing, 2022. "On functional processes with multiple discontinuities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 933-972, July.
    12. Han Lin Shang & Jiguo Cao & Peijun Sang, 2022. "Stopping time detection of wood panel compression: A functional time‐series approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1205-1224, November.
    13. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    14. Stoehr, Christina & Aston, John A D & Kirch, Claudia, 2021. "Detecting changes in the covariance structure of functional time series with application to fMRI data," Econometrics and Statistics, Elsevier, vol. 18(C), pages 44-62.
    15. Tadas Danielius & Alfredas Račkauskas, 2022. "Multiple Change-Point Detection in a Functional Sample via the 𝒢-Sum Process," Mathematics, MDPI, vol. 10(13), pages 1-27, June.
    16. Rice, Gregory & Zhang, Chi, 2022. "Consistency of binary segmentation for multiple change-point estimation with functional data," Statistics & Probability Letters, Elsevier, vol. 180(C).
    17. Holger Dette & Kevin Kokot, 2022. "Detecting relevant differences in the covariance operators of functional time series: a sup-norm approach," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 195-231, April.
    18. Xu, Haotian & Wang, Daren & Zhao, Zifeng & Yu, Yi, 2022. "Change point inference in high-dimensional regression models under temporal dependence," LIDAM Discussion Papers ISBA 2022027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. J. Derek Tucker & Drew Yarger, 2024. "Elastic functional changepoint detection of climate impacts from localized sources," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:80:y:2018:i:3:p:509-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.