IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v172y2024ics0304414924000577.html
   My bibliography  Save this article

Solutions for Poissonian stopping problems of linear diffusions via extremal processes

Author

Listed:
  • Alvarez E., Luis H.R.
  • Lempa, Jukka
  • Saarinen, Harto
  • Sillanpää, Wiljami

Abstract

We develop a general yet simple technique for solving Poissonian timing problems of linear diffusions by relying on the close connection of the extremal processes and the first passage times of the underlying diffusion. We provide a closed-form representation of the expected value gained by employing an ordinary first passage time-based stopping strategy. This approach simplifies the determination of the optimal policy, transforming it into an analysis of ordinary first-order optimality conditions. We relate our findings to various existing approaches for solving stopping problems of linear diffusions and express the optimality conditions in a single boundary setting in a form familiar from optimal stopping of Lévy-processes.

Suggested Citation

  • Alvarez E., Luis H.R. & Lempa, Jukka & Saarinen, Harto & Sillanpää, Wiljami, 2024. "Solutions for Poissonian stopping problems of linear diffusions via extremal processes," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
  • Handle: RePEc:eee:spapps:v:172:y:2024:i:c:s0304414924000577
    DOI: 10.1016/j.spa.2024.104351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924000577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Hobson & Gechun Liang & Edward Wang, 2021. "Callable convertible bonds under liquidity constraints and hybrid priorities," Papers 2111.02554, arXiv.org, revised Oct 2024.
    2. Pérez, José-Luis & Yamazaki, Kazutoshi, 2018. "American options under periodic exercise opportunities," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 92-101.
    3. Hobson, David & Zeng, Matthew, 2022. "Constrained optimal stopping, liquidity and effort," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 819-843.
    4. Huyên Pham & Peter Tankov, 2008. "A Model Of Optimal Consumption Under Liquidity Risk With Random Trading Times," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 613-627, October.
    5. Sören Christensen, 2013. "Optimal decision under ambiguity for diffusion processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 207-226, April.
    6. Lange, Rutger-Jan & Ralph, Daniel & Støre, Kristian, 2020. "Real-Option Valuation in Multiple Dimensions Using Poisson Optional Stopping Times," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(2), pages 653-677, March.
    7. Zbigniew Palmowski & José Luis Pérez & Kazutoshi Yamazaki, 2021. "Double continuation regions for American options under Poisson exercise opportunities," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 722-771, April.
    8. Takuji Arai & Masahiko Takenaka, 2022. "Constrained optimal stopping under a regime-switching model," Papers 2204.07914, arXiv.org.
    9. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    10. Albrecher, Hansjörg & Ivanovs, Jevgenijs, 2017. "Strikingly simple identities relating exit problems for Lévy processes under continuous and Poisson observations," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 643-656.
    11. Gechun Liang & Haodong Sun, 2018. "Dynkin games with Poisson random intervention times," Papers 1803.00329, arXiv.org, revised Jul 2019.
    12. Hobson, David, 2021. "The shape of the value function under Poisson optimal stopping," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 229-246.
    13. Ernesto Mordecki, 2002. "Optimal stopping and perpetual options for Lévy processes," Finance and Stochastics, Springer, vol. 6(4), pages 473-493.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    2. Hobson, David, 2021. "The shape of the value function under Poisson optimal stopping," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 229-246.
    3. David Hobson & Gechun Liang & Edward Wang, 2021. "Callable convertible bonds under liquidity constraints and hybrid priorities," Papers 2111.02554, arXiv.org, revised Oct 2024.
    4. Jukka Lempa, 2008. "On infinite horizon optimal stopping of general random walk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 257-268, April.
    5. Takuji Arai & Masahiko Takenaka, 2022. "Constrained optimal stopping under a regime-switching model," Papers 2204.07914, arXiv.org.
    6. Zbigniew Palmowski & José Luis Pérez & Budhi Arta Surya & Kazutoshi Yamazaki, 2020. "The Leland–Toft optimal capital structure model under Poisson observations," Finance and Stochastics, Springer, vol. 24(4), pages 1035-1082, October.
    7. Christensen, Sören, 2014. "On the solution of general impulse control problems using superharmonic functions," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 709-729.
    8. Zbigniew Palmowski & José Luis Pérez & Kazutoshi Yamazaki, 2021. "Double continuation regions for American options under Poisson exercise opportunities," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 722-771, April.
    9. Soren Christensen, 2011. "A method for pricing American options using semi-infinite linear programming," Papers 1103.4483, arXiv.org, revised Jun 2011.
    10. Gapeev Pavel V. & Rodosthenous Neofytos, 2013. "Perpetual American options in a diffusion model with piecewise-linear coefficients," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 1-21, March.
    11. Zbigniew Palmowski & Jos'e Luis P'erez & Budhi Arta Surya & Kazutoshi Yamazaki, 2019. "The Leland-Toft optimal capital structure model under Poisson observations," Papers 1904.03356, arXiv.org, revised Mar 2020.
    12. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    13. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, August.
    14. Manuel Guerra & Cláudia Nunes & Carlos Oliveira, 2021. "The optimal stopping problem revisited," Statistical Papers, Springer, vol. 62(1), pages 137-169, February.
    15. Alessandra Cretarola & Fausto Gozzi & Huyên Pham & Peter Tankov, 2011. "Optimal consumption policies in illiquid markets," Finance and Stochastics, Springer, vol. 15(1), pages 85-115, January.
    16. Li, Lingfei & Linetsky, Vadim, 2014. "Optimal stopping in infinite horizon: An eigenfunction expansion approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 122-128.
    17. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    18. Tiziano De Angelis & Giorgio Ferrari & John Moriarty, 2019. "A Solvable Two-Dimensional Degenerate Singular Stochastic Control Problem with Nonconvex Costs," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 512-531, May.
    19. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
    20. Jin Hyuk Choi & Tae Ung Gang, 2021. "Optimal investment in illiquid market with search frictions and transaction costs," Papers 2101.09936, arXiv.org, revised Aug 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:172:y:2024:i:c:s0304414924000577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.