IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v135y2018icp92-101.html
   My bibliography  Save this article

American options under periodic exercise opportunities

Author

Listed:
  • Pérez, José-Luis
  • Yamazaki, Kazutoshi

Abstract

In this paper, we study a version of the perpetual American call/put option where exercise opportunities arrive only periodically. Focusing on the exponential Lévy models with i.i.d. exponentially-distributed exercise intervals, we show the optimality of a barrier strategy that exercises at the first exercise opportunity at which the asset price is above/below a given barrier. Explicit solutions are obtained for the cases where the underlying Lévy process has only one-sided jumps.

Suggested Citation

  • Pérez, José-Luis & Yamazaki, Kazutoshi, 2018. "American options under periodic exercise opportunities," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 92-101.
  • Handle: RePEc:eee:stapro:v:135:y:2018:i:c:p:92-101
    DOI: 10.1016/j.spl.2017.11.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715217303747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2017.11.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florin Avram & Zbigniew Palmowski & Martijn R. Pistorius, 2007. "On the optimal dividend problem for a spectrally negative L\'{e}vy process," Papers math/0702893, arXiv.org.
    2. L. Alili & A. E. Kyprianou, 2005. "Some remarks on first passage of Levy processes, the American put and pasting principles," Papers math/0508487, arXiv.org.
    3. Pérez, José-Luis & Yamazaki, Kazutoshi, 2017. "On the optimality of periodic barrier strategies for a spectrally positive Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 1-13.
    4. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
    5. Avanzi, Benjamin & Tu, Vincent & Wong, Bernard, 2014. "On optimal periodic dividend strategies in the dual model with diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 210-224.
    6. Ernesto Mordecki, 2002. "Optimal stopping and perpetual options for Lévy processes," Finance and Stochastics, Springer, vol. 6(4), pages 473-493.
    7. Avram, Florin & Pérez, José-Luis & Yamazaki, Kazutoshi, 2018. "Spectrally negative Lévy processes with Parisian reflection below and classical reflection above," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 255-290.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zbigniew Palmowski & Jos'e Luis P'erez & Budhi Arta Surya & Kazutoshi Yamazaki, 2019. "The Leland-Toft optimal capital structure model under Poisson observations," Papers 1904.03356, arXiv.org, revised Mar 2020.
    2. Nishihara, Michi, 2023. "Target-initiated takeover with search frictions," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1480-1497.
    3. Alvarez E., Luis H.R. & Lempa, Jukka & Saarinen, Harto & Sillanpää, Wiljami, 2024. "Solutions for Poissonian stopping problems of linear diffusions via extremal processes," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    4. Zbigniew Palmowski & José Luis Pérez & Kazutoshi Yamazaki, 2021. "Double continuation regions for American options under Poisson exercise opportunities," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 722-771, April.
    5. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    6. Zbigniew Palmowski & José Luis Pérez & Budhi Arta Surya & Kazutoshi Yamazaki, 2020. "The Leland–Toft optimal capital structure model under Poisson observations," Finance and Stochastics, Springer, vol. 24(4), pages 1035-1082, October.
    7. Michi Nishihara, 2019. "Real options with illiquidity of exercise opportunities," Discussion Papers in Economics and Business 19-01, Osaka University, Graduate School of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    2. Zbigniew Palmowski & José Luis Pérez & Budhi Arta Surya & Kazutoshi Yamazaki, 2020. "The Leland–Toft optimal capital structure model under Poisson observations," Finance and Stochastics, Springer, vol. 24(4), pages 1035-1082, October.
    3. Noba, Kei & Pérez, José-Luis & Yamazaki, Kazutoshi & Yano, Kouji, 2018. "On optimal periodic dividend strategies for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 29-44.
    4. Zbigniew Palmowski & Jos'e Luis P'erez & Budhi Arta Surya & Kazutoshi Yamazaki, 2019. "The Leland-Toft optimal capital structure model under Poisson observations," Papers 1904.03356, arXiv.org, revised Mar 2020.
    5. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    6. Bo, Lijun & Song, Renming & Tang, Dan & Wang, Yongjin & Yang, Xuewei, 2012. "Lévy risk model with two-sided jumps and a barrier dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 280-291.
    7. Zbigniew Palmowski & José Luis Pérez & Kazutoshi Yamazaki, 2021. "Double continuation regions for American options under Poisson exercise opportunities," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 722-771, April.
    8. Gapeev, Pavel V., 2008. "The integral option in a model with jumps," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2623-2631, November.
    9. Dong, Hua & Zhou, Xiaowen, 2019. "On a spectrally negative Lévy risk process with periodic dividends and capital injections," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    10. Kleinert, Florian & van Schaik, Kees, 2015. "A variation of the Canadisation algorithm for the pricing of American options driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3234-3254.
    11. Gapeev, Pavel V., 2006. "Integral options in models with jumps," SFB 649 Discussion Papers 2006-068, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2020. "Optimal periodic dividend strategies for spectrally positive Lévy risk processes with fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 315-332.
    13. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    14. Wenyuan Wang & Yuebao Wang & Ping Chen & Xueyuan Wu, 2022. "Dividend and Capital Injection Optimization with Transaction Cost for Lévy Risk Processes," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 924-965, September.
    15. Lin, Yi-Shen, 2024. "A note on one-sided solutions for optimal stopping problems driven by Lévy processes," Statistics & Probability Letters, Elsevier, vol. 206(C).
    16. Noba, Kei, 2021. "On the optimality of double barrier strategies for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 73-102.
    17. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "On the optimality of joint periodic and extraordinary dividend strategies," Papers 2006.00717, arXiv.org, revised Dec 2020.
    18. Gapeev Pavel V. & Kühn Christoph, 2005. "Perpetual convertible bonds in jump-diffusion models," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 15-31, January.
    19. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2021. "On the optimality of joint periodic and extraordinary dividend strategies," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1189-1210.
    20. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:135:y:2018:i:c:p:92-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.