IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v30y2013i1p1-21n4.html
   My bibliography  Save this article

Perpetual American options in a diffusion model with piecewise-linear coefficients

Author

Listed:
  • Gapeev Pavel V.
  • Rodosthenous Neofytos

Abstract

We derive closed form solutions to the discounted optimal stopping problems related to the pricing of the perpetual American standard put and call options in an extension of the Black–Merton–Scholes model with piecewise-constant dividend and volatility rates. The method of proof is based on the reduction of the initial optimal stopping problems to the associated free-boundary problems and the subsequent martingale verification using a local time-space formula. We present explicit algorithms to determine the constant hitting thresholds for the underlying asset price process, which provide the optimal exercise boundaries for the options.

Suggested Citation

  • Gapeev Pavel V. & Rodosthenous Neofytos, 2013. "Perpetual American options in a diffusion model with piecewise-linear coefficients," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 1-21, March.
  • Handle: RePEc:bpj:strimo:v:30:y:2013:i:1:p:1-21:n:4
    DOI: 10.1524/strm.2013.1135
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/strm.2013.1135
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/strm.2013.1135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ernesto Mordecki, 1999. "Optimal stopping for a diffusion with jumps," Finance and Stochastics, Springer, vol. 3(2), pages 227-236.
    2. Radner, Roy & Shepp, Larry, 1996. "Risk vs. profit potential: A model for corporate strategy," Journal of Economic Dynamics and Control, Elsevier, vol. 20(8), pages 1373-1393, August.
    3. Ernesto Mordecki, 2002. "Optimal stopping and perpetual options for Lévy processes," Finance and Stochastics, Springer, vol. 6(4), pages 473-493.
    4. L. Alili & A. E. Kyprianou, 2005. "Some remarks on first passage of Levy processes, the American put and pasting principles," Papers math/0508487, arXiv.org.
    5. Stéphane Villeneuve, 2007. "On the Threshold Strategies and Smooth-Fit Principle For Optimal Stopping Problems," Post-Print hal-00173165, HAL.
    6. Aurélien Alfonsi & Benjamin Jourdain, 2008. "General Duality For Perpetual American Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 545-566.
    7. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Palmowski & Jos'e Luis P'erez & Kazutoshi Yamazaki, 2020. "Double continuation regions for American options under Poisson exercise opportunities," Papers 2004.03330, arXiv.org.
    2. Jukka Lempa, 2008. "On infinite horizon optimal stopping of general random walk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 67(2), pages 257-268, April.
    3. Gapeev, Pavel V., 2008. "The integral option in a model with jumps," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2623-2631, November.
    4. Kleinert, Florian & van Schaik, Kees, 2015. "A variation of the Canadisation algorithm for the pricing of American options driven by Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3234-3254.
    5. Gapeev, Pavel V., 2006. "Integral options in models with jumps," SFB 649 Discussion Papers 2006-068, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    7. Manuel Guerra & Cláudia Nunes & Carlos Oliveira, 2021. "The optimal stopping problem revisited," Statistical Papers, Springer, vol. 62(1), pages 137-169, February.
    8. Lin, Yi-Shen, 2024. "A note on one-sided solutions for optimal stopping problems driven by Lévy processes," Statistics & Probability Letters, Elsevier, vol. 206(C).
    9. S. C. P. Yam & S. P. Yung & W. Zhou, 2014. "Game Call Options Revisited," Mathematical Finance, Wiley Blackwell, vol. 24(1), pages 173-206, January.
    10. Leippold, Markus & Vasiljević, Nikola, 2017. "Pricing and disentanglement of American puts in the hyper-exponential jump-diffusion model," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 78-94.
    11. Gapeev Pavel V. & Kühn Christoph, 2005. "Perpetual convertible bonds in jump-diffusion models," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 15-31, January.
    12. Ferrari, Giorgio & Salminen, Paavo, 2016. "Irreversible Investment under Lévy Uncertainty: an Equation for the Optimal Boundary," Center for Mathematical Economics Working Papers 530, Center for Mathematical Economics, Bielefeld University.
    13. Armerin, Fredrik, 2023. "Investments with declining cost following a Lévy process," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1052-1062.
    14. Alvarez E., Luis H.R. & Lempa, Jukka & Saarinen, Harto & Sillanpää, Wiljami, 2024. "Solutions for Poissonian stopping problems of linear diffusions via extremal processes," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    15. Long, Mingsi & Zhang, Hongzhong, 2019. "On the optimality of threshold type strategies in single and recursive optimal stopping under Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2821-2849.
    16. Christensen, Sören, 2014. "On the solution of general impulse control problems using superharmonic functions," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 709-729.
    17. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    18. Décamps, Jean-Paul & Villeneuve, Stéphane, 2015. "Integrating profitability prospects and cash management," IDEI Working Papers 849, Institut d'Économie Industrielle (IDEI), Toulouse.
    19. Christensen, Sören & Salminen, Paavo & Ta, Bao Quoc, 2013. "Optimal stopping of strong Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1138-1159.
    20. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Papers 2006.00282, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:30:y:2013:i:1:p:1-21:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.