IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v133y2021icp229-246.html
   My bibliography  Save this article

The shape of the value function under Poisson optimal stopping

Author

Listed:
  • Hobson, David

Abstract

In a classical problem for the stopping of a diffusion process (Xt)t≥0, where the goal is to maximise the expected discounted value of a function of the stopped process Ex[e−βτg(Xτ)], maximisation takes place over all stopping times τ. In a Poisson optimal stopping problem, stopping is restricted to event times of an independent Poisson process. In this article we consider whether the resulting value function Vθ(x)=supτ∈T(Tθ)Ex[e−βτg(Xτ)] (where the supremum is taken over stopping times taking values in the event times of an inhomogeneous Poisson process with rate θ=(θ(Xt))t≥0) inherits monotonicity and convexity properties from g. It turns out that monotonicity (respectively convexity) of Vθ in x depends on the monotonicity (respectively convexity) of the quantity θ(x)g(x)θ(x)+β rather than g. Our main technique is stochastic coupling.

Suggested Citation

  • Hobson, David, 2021. "The shape of the value function under Poisson optimal stopping," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 229-246.
  • Handle: RePEc:eee:spapps:v:133:y:2021:i:c:p:229-246
    DOI: 10.1016/j.spa.2020.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414920304245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Lange, Rutger-Jan & Ralph, Daniel & Støre, Kristian, 2020. "Real-Option Valuation in Multiple Dimensions Using Poisson Optional Stopping Times," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(2), pages 653-677, March.
    3. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    4. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Milazzo, 2024. "On the Monotonicity of the Stopping Boundary for Time-Inhomogeneous Optimal Stopping Problems," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 336-358, October.
    2. Alvarez E., Luis H.R. & Lempa, Jukka & Saarinen, Harto & Sillanpää, Wiljami, 2024. "Solutions for Poissonian stopping problems of linear diffusions via extremal processes," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    3. Takuji Arai & Masahiko Takenaka, 2022. "Constrained optimal stopping under a regime-switching model," Papers 2204.07914, arXiv.org.
    4. David Hobson & Gechun Liang & Edward Wang, 2021. "Callable convertible bonds under liquidity constraints and hybrid priorities," Papers 2111.02554, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    2. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    3. Rodriguez, Ricardo J., 2002. "Lognormal option pricing for arbitrary underlying assets: a synthesis," The Quarterly Review of Economics and Finance, Elsevier, vol. 42(3), pages 577-586.
    4. Panagiotidis, Theodore & Printzis, Panagiotis, 2020. "What is the investment loss due to uncertainty?," Global Finance Journal, Elsevier, vol. 45(C).
    5. Carpenter, Jennifer N., 1998. "The exercise and valuation of executive stock options," Journal of Financial Economics, Elsevier, vol. 48(2), pages 127-158, May.
    6. Richards, Timothy J. & Manfredo, Mark R., 2003. "Infrequent Shocks and Rating Revenue Insurance: A Contingent Claims Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(2), pages 1-19, August.
    7. Hiraki, Takato & Takezawa, Nobuya, 1997. "How sensitive is short-term Japanese interest rate volatility to the level of the interest rate?," Economics Letters, Elsevier, vol. 56(3), pages 325-332, November.
    8. Chen, Andrew H., 2002. "A new perspective on infrastructure financing in Asia," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 227-242, June.
    9. Zhou, Qi-Yuan & Wu, Chong-Feng & Feng, Yun, 2007. "Decomposing and valuing callable convertible bonds: a new method based on exotic options," MPRA Paper 7421, University Library of Munich, Germany.
    10. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    11. Ter Horst, J.R. & Veld, C.H., 2002. "Behavioral Preferences for Individual Securities : The Case for Call Warrants and Call Options," Discussion Paper 2002-95, Tilburg University, Center for Economic Research.
    12. Chung, Keunsuk & Turnovsky, Stephen J., 2010. "Foreign debt supply in an imperfect international capital market: Theory and evidence," Journal of International Money and Finance, Elsevier, vol. 29(2), pages 201-223, March.
    13. Frans De Roon & Chris Veld, 1996. "An empirical investigation of the factors that determine the pricing of Dutch index warrants," European Financial Management, European Financial Management Association, vol. 2(1), pages 97-112, March.
    14. Majd, Saman & Pindyck, Robert S., 1987. "Time to build, option value, and investment decisions," Journal of Financial Economics, Elsevier, vol. 18(1), pages 7-27, March.
    15. Norden, Lars, 2001. "Hedging of American equity options: do call and put prices always move in the direction as predicted by the movement in the underlying stock price?," Journal of Multinational Financial Management, Elsevier, vol. 11(4-5), pages 321-340, December.
    16. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    17. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    18. Ben Boukai, 2021. "The Generalized Gamma distribution as a useful RND under Heston's stochastic volatility model," Papers 2108.07937, arXiv.org, revised Aug 2021.
    19. Chuang-Chang Chang & Jun-Biao Lin, 2010. "The valuation of multivariate contingent claims under transformed trinomial approaches," Review of Quantitative Finance and Accounting, Springer, vol. 34(1), pages 23-36, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:133:y:2021:i:c:p:229-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.