IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v165y2023icp183-217.html
   My bibliography  Save this article

An application of the multiplicative Sewing Lemma to the high order weak approximation of stochastic differential equations

Author

Listed:
  • Hocquet, Antoine
  • Vogler, Alexander

Abstract

We introduce a variant of the multiplicative Sewing Lemma in [Gerasimovičs, Hocquet, Nilssen; J. Funct. Anal. 281 (2021)] which yields arbitrary high order weak approximations to stochastic differential equations, extending the cubature approximation on Wiener space introduced by Lyons and Victoir. Our analysis allows to derive stability estimates and explicit weak convergence rates. As a particular example, a cubature approximation for stochastic differential equations driven by continuous Gaussian martingales is given.

Suggested Citation

  • Hocquet, Antoine & Vogler, Alexander, 2023. "An application of the multiplicative Sewing Lemma to the high order weak approximation of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 183-217.
  • Handle: RePEc:eee:spapps:v:165:y:2023:i:c:p:183-217
    DOI: 10.1016/j.spa.2023.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414923001692
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2023.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Syoiti Ninomiya & Nicolas Victoir, 2008. "Weak Approximation of Stochastic Differential Equations and Application to Derivative Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 107-121.
    2. Passeggeri, Riccardo, 2020. "On the signature and cubature of the fractional Brownian motion for H>12," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1226-1257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Bayer & Peter K. Friz & Paul Gassiat & Jorg Martin & Benjamin Stemper, 2020. "A regularity structure for rough volatility," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 782-832, July.
    2. Masahiro Nishiba, 2013. "Pricing Exotic Options and American Options: A Multidimensional Asymptotic Expansion Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(2), pages 147-182, May.
    3. Rey, Clément, 2019. "Approximation of Markov semigroups in total variation distance under an irregular setting: An application to the CIR process," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 539-571.
    4. Abdelkoddousse Ahdida & Aurélien Alfonsi, 2013. "Exact and high order discretization schemes for Wishart processes and their affine extensions," Post-Print hal-00491371, HAL.
    5. Kazuhiro Yoshikawa, 2015. "An Approximation Scheme for Diffusion Processes Based on an Antisymmetric Calculus over Wiener Space," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 22(2), pages 185-207, May.
    6. Christian Bayer & Peter K. Friz, 2013. "Cubature on Wiener space: pathwise convergence," Papers 1304.4623, arXiv.org.
    7. Akiyama, Naho & Yamada, Toshihiro, 2024. "A weak approximation for Bismut’s formula: An algorithmic differentiation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 386-396.
    8. Abdelkoddousse Ahdida & Aur'elien Alfonsi, 2011. "A Mean-Reverting SDE on Correlation matrices," Papers 1108.5264, arXiv.org, revised Feb 2012.
    9. Mariko Ninomiya, 2011. "Sde Weak Approximation Library (Sde Wa) (Version 1.0)," CARF F-Series CARF-F-274, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    10. Susana Alvarez Diez & Samuel Baixauli & Luis Eduardo Girón, 2019. "Valoración de opciones call asiáticas Promedio Aritmético usando Taylor Estocástico 1.5," Working Papers 44, Faculty of Economics and Management, Pontificia Universidad Javeriana Cali.
    11. Christian Bayer & Peter K. Friz & Paul Gassiat & Joerg Martin & Benjamin Stemper, 2017. "A regularity structure for rough volatility," Papers 1710.07481, arXiv.org.
    12. Al Gerbi, A. & Jourdain, B. & Clément, E., 2018. "Asymptotics for the normalized error of the Ninomiya–Victoir scheme," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 1889-1928.
    13. Kenichiro Shiraya & Akihiko Takahashi & Masashi Toda, 2009. "Pricing Barrier and Average Options under Stochastic Volatility Environment," CIRJE F-Series CIRJE-F-682, CIRJE, Faculty of Economics, University of Tokyo.
    14. Riu Naito & Toshihiro Yamada, 2024. "Deep Kusuoka Approximation: High-Order Spatial Approximation for Solving High-Dimensional Kolmogorov Equations and Its Application to Finance," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1443-1461, September.
    15. Arturo Kohatsu-Higa & Salvador Ortiz-Latorre & Peter Tankov, 2012. "Optimal simulation schemes for L\'evy driven stochastic differential equations," Papers 1204.4877, arXiv.org.
    16. Yusuke Morimoto & Makiko Sasada, 2015. "Algebraic Structure of Vector Fields in Financial Diffusion Models and its Applications," Papers 1510.02013, arXiv.org, revised Dec 2015.
    17. Shigeto Kusuoka & Mariko Ninomiya & Syoiti Ninomiya, 2012. "Application Of The Kusuoka Approximation To Barrier Options," CARF F-Series CARF-F-277, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    18. Jean-Franc{c}ois Chassagneux & Junchao Chen & Noufel Frikha, 2022. "Deep Runge-Kutta schemes for BSDEs," Papers 2212.14372, arXiv.org.
    19. Mariko Ninomiya & Syoiti Ninomiya, 2009. "A new higher-order weak approximation scheme for stochastic differential equations and the Runge–Kutta method," Finance and Stochastics, Springer, vol. 13(3), pages 415-443, September.
    20. Kenichiro Shiraya & Akihiko Takahashi & Masashi Toda, 2010. "Pricing Barrier and Average Options under Stochastic Volatility Environment," CIRJE F-Series CIRJE-F-745, CIRJE, Faculty of Economics, University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:165:y:2023:i:c:p:183-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.