IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v148y2022icp299-323.html
   My bibliography  Save this article

A ℂ0,1-functional Itô’s formula and its applications in mathematical finance

Author

Listed:
  • Bouchard, Bruno
  • Loeper, Grégoire
  • Tan, Xiaolu

Abstract

Using Dupire’s notion of vertical derivative, we provide a functional (path-dependent) extension of the Itô’s formula of Gozzi and Russo (2006) that applies to C0,1-functions of continuous weak Dirichlet processes. It is motivated and illustrated by its applications to the hedging or superhedging problems of path-dependent options in mathematical finance, in particular in the case of model uncertainty. In this context, we also prove a new regularity result for the vertical derivative of candidate solutions to a class of path-depend PDEs, using an approximation argument which seems to be original and of own interest.

Suggested Citation

  • Bouchard, Bruno & Loeper, Grégoire & Tan, Xiaolu, 2022. "A ℂ0,1-functional Itô’s formula and its applications in mathematical finance," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 299-323.
  • Handle: RePEc:eee:spapps:v:148:y:2022:i:c:p:299-323
    DOI: 10.1016/j.spa.2022.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414922000461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2022.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem For Continuous Processes," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 963-987, October.
    2. Gozzi, Fausto & Russo, Francesco, 2006. "Weak Dirichlet processes with a stochastic control perspective," Stochastic Processes and their Applications, Elsevier, vol. 116(11), pages 1563-1583, November.
    3. Ren, Zhenjie & Tan, Xiaolu, 2017. "On the convergence of monotone schemes for path-dependent PDEs," Stochastic Processes and their Applications, Elsevier, vol. 127(6), pages 1738-1762.
    4. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem for Continuous Processes," Post-Print hal-01076062, HAL.
    5. Bruno Bouchard & Jean-François Chassagneux, 2016. "Fundamentals and Advanced Techniques in Derivatives Hedging," Post-Print hal-01348864, HAL.
    6. Russo, Francesco & Vallois, Pierre, 1995. "The generalized covariation process and Ito formula," Stochastic Processes and their Applications, Elsevier, vol. 59(1), pages 81-104, September.
    7. Errami, Mohammed & Russo, Francesco, 2003. "n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes," Stochastic Processes and their Applications, Elsevier, vol. 104(2), pages 259-299, April.
    8. Bandini, Elena & Russo, Francesco, 2017. "Weak Dirichlet processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 4139-4189.
    9. Jianfeng Zhang & Jia Zhuo, 2014. "Monotone schemes for fully nonlinear parabolic path dependent PDEs," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 1-23.
    10. Bruno Bouchard & Xiaolu Tan, 2021. "A quasi-sure optional decomposition and super-hedging result on the Skorokhod space," Finance and Stochastics, Springer, vol. 25(3), pages 505-528, July.
    11. Ariel Neufeld & Marcel Nutz, 2012. "Superreplication under Volatility Uncertainty for Measurable Claims," Papers 1208.6486, arXiv.org, revised Apr 2013.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruno Bouchard & Grégoire Loeper & Xiaolu Tan, 2022. "A C^{0,1}-functional Itô's formula and its applications in mathematical finance," Post-Print hal-03105342, HAL.
    2. Bruno Bouchard & Gr'egoire Loeper & Xiaolu Tan, 2021. "A $C^{0,1}$-functional It\^o's formula and its applications in mathematical finance," Papers 2101.03759, arXiv.org.
    3. Thibaut Mastrolia & Dylan Possamaï, 2018. "Moral Hazard Under Ambiguity," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 452-500, November.
    4. Bruno Bouchard & Grégoire Loeper & Xiaolu Tan, 2021. "A C^{0,1}-functional Itô's formula and its applications in mathematical finance," Working Papers hal-03105342, HAL.
    5. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    6. Bruno Bouchard & Xiaolu Tan, 2021. "A quasi-sure optional decomposition and super-hedging result on the Skorokhod space," Finance and Stochastics, Springer, vol. 25(3), pages 505-528, July.
    7. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    8. Bandini, Elena & Russo, Francesco, 2017. "Weak Dirichlet processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 4139-4189.
    9. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    10. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    11. Anna Aksamit & Ivan Guo & Shidan Liu & Zhou Zhou, 2021. "Superhedging duality for multi-action options under model uncertainty with information delay," Papers 2111.14502, arXiv.org, revised Nov 2023.
    12. Nutz, Marcel & Stebegg, Florian & Tan, Xiaowei, 2020. "Multiperiod martingale transport," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1568-1615.
    13. Yu‐Jui Huang & Xiang Yu, 2021. "Optimal stopping under model ambiguity: A time‐consistent equilibrium approach," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 979-1012, July.
    14. Fabbri, Giorgio & Russo, Francesco, 2017. "Infinite dimensional weak Dirichlet processes and convolution type processes," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 325-357.
    15. Felix-Benedikt Liebrich & Marco Maggis & Gregor Svindland, 2020. "Model Uncertainty: A Reverse Approach," Papers 2004.06636, arXiv.org, revised Mar 2022.
    16. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    17. Biagini, Francesca & Mazzon, Andrea & Oberpriller, Katharina, 2023. "Reduced-form framework for multiple ordered default times under model uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 1-43.
    18. Henry Chiu & Rama Cont, 2023. "A model‐free approach to continuous‐time finance," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 257-273, April.
    19. Julian Holzermann, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Papers 2003.04606, arXiv.org, revised Nov 2021.
    20. Patrick Cheridito & Matti Kiiski & David J. Promel & H. Mete Soner, 2019. "Martingale optimal transport duality," Papers 1904.04644, arXiv.org, revised Nov 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:148:y:2022:i:c:p:299-323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.